UNITED NATIONS **EP** United Nations Environment Programme Distr. GENERAL UNEP/OzL.Pro/ExCom/59/16 9 October 2009 ORIGINAL: ENGLISH EXECUTIVE COMMITTEE OF THE MULTILATERAL FUND FOR THE IMPLEMENTATION OF THE MONTREAL PROTOCOL Fifty-ninth Meeting Port Ghalib, Egypt, 10-14 November 2009 WORLD BANK'S WORK PROGRAMME AMENDMENTS FOR 2009 # COMMENTS AND RECOMMENDATION OF THE FUND SECRETARIAT - 1. The World Bank is requesting approval from the Executive Committee of US \$315,000 for amendments to its 2009 Work Programme, plus agency support costs of US \$23,625. - 2. The activities proposed in the World Bank's Amendments to its Work Programme are presented in Table 1 below: Table 1: World Bank's Work Programme Amendments | Country | Activity/Project | Amount
Requested
(US \$) | Amount
Recommended
(US \$) | | | | |------------------------|---|--------------------------------|----------------------------------|--|--|--| | SECTION A: ACT | IVITIES RECOMMENDED FOR BLANKET APPROVAL | | | | | | | A1. Project prepara | ation of HPMP (investment component) | | | | | | | Philippines | Preparation for investment activities in the air-conditioning | 65,000 | 65,000 | | | | | | sector | | | | | | | | Subtotal for A1: | 65,000 | 65,000 | | | | | SECTION B: ACTI | SECTION B: ACTIVITIES RECOMMENDED FOR INDIVIDUAL CONSIDERATION | | | | | | | B1. Technical Assis | stant: | | | | | | | Global | Resource mobilization to address climate co-benefits in | 250,000 | * | | | | | | HCFC phase-out | | | | | | | | Subtotal for B1: | 250,000 | | | | | | Total for sections A | and B | 315,000 | 65,000 | | | | | Agency support co | sts (7.5 per cent for project preparation and institutional | 23,625 | 4,875 | | | | | strengthening, and for | or other activities over US \$250,000, and 9 per cent for other | | | | | | | activities under US \$ | 250,000): | | | | | | | Total: | | 338,625 | 69,875 | | | | ^{*}Project for individual consideration or pending. # SECTION A: ACTIVITIES RECOMMENDED FOR BLANKET APPROVAL # A1. Project preparation funding: Philippines: Preparation for HPMP investment projects (domestic air-conditioning sector): US \$65,000 # **Project description** 3. The World Bank requested additional funds for the preparation of investment activities on behalf of the Government of the Philippines whose HPMP preparation funding was approved at the 55th Meeting for US \$195,000. In its submission, the World Bank provided information about the country's HCFC consumption and the specific sector for which the investment preparation funding is being sought. It also provided information on how this sector plan will link to a comprehensive HPMP as there are multiple agencies working in the different sectors in the country. #### **Secretariat's comments** 4. The Secretariat reviewed the World Bank's submission in detail and noted that this activity is not included in the 2009 Business Plan of the World Bank approved at the 57th Meeting. It sought clarification on this issue, and was informed that this was a specific request from the country where, in line with decision 56/16 and based on the Philippines 2007 consumption of 180.2 ODP tonnes, the country is entitled to no more than US \$200,000 for project preparation for the investment component of the HPMP. In its review, the Secretariat noted that similar funds are also being requested for the foam and the refrigeration sector (except for domestic air conditioning), and that the total amount being sought is consistent with the country's eligibility under decision 56/16. It also noted that the country has consulted with the different agencies that are collaborating in the HPMP preparation process, and that there is a clear understanding on the division of responsibilities for each agency. The Secretariat also considered that despite this request not being in the agency's business plan, it could be considered by the Executive Committee as there is no policy issue associated with the request and it is consistent with decision 56/16. # Secretariat's recommendation 5. The Secretariat recommends blanket approval for the request for the preparation of the investment activities for the domestic air conditioning sector associated with the HPMP in the Philippines, at the amount of US \$65,000. # SECTION B: ACTIVITIES RECOMMENDED FOR INDIVIDUAL CONSIDERATION #### **B1.** Technical Assistance Global: Resource mobilization for HCFC phase-out and climate co-benefits US \$250,000 # **Project description** - 6. The World Bank submitted a request to the 57th and 58th Meeting for a technical assistance project for mobilizing resources to maximize climate benefits of HCFC phase-out, at a funding level of US \$250,000. This request is being resubmitted by the World Bank for the consideration at this meeting. The proposal includes a concept note describing the objectives, activities, as well as expected results of this project. The proposal was resubmitted by the World Bank without any changes to that provided at the 58th meeting. - 7. According to the World Bank, the project intends to explore options for preempting an increase in the demand for HFCs or any other high GWP gases in the consumption sector as a result of HCFC phase-out in developing countries. The study will review and examine potential mechanisms available for financing the transition to low GWP alternatives, including a scheduled phase-down of HFCs in developing countries and countries with economies in transition. The project will also address technology limitations and the trade-off between energy efficiency gains and low GWP gases in order to maximize overall energy benefits. - 8. The study will investigate: (i) costs and barriers associated with conversion of HCFC technology to low GWP alternatives; (ii) volume of HFCs and other alternatives in terms of CO2 equivalent associated with the consumption and production of HCFCs in developing countries, including by-products of other chemical processes; (iii) potential funding sources (i.e., the Multilateral Fund, UNFCCC, Tradable Carbon Market, Carbon Partnership Funds, Clean Technology Fund, etc.) to support adoption of better HCFC containment practice, and climate friendly technologies. It will also provide a recommendation for funding methodologies such as approaches to evaluate and baseline consumption and production of HFCs and scheduled phase-down. In addition, the project will investigate effective modalities for implementing these activities in order to ensure synergy between the activities funded under the Multilateral Fund, and those that could potentially be funded from other funding sources. - 9. The World Bank indicates that they will initially produce a detailed terms of reference for this study to be submitted for consideration by the Executive Committee once a decision on resource mobilization is taken. The TOR will be used as a basis for this study for which funding is being sought, and will take about 12 months to complete. The final report of the study will be submitted to the Executive Committee as soon as it has been completed. - 10. The table below provides a breakdown of the US \$250,000 as requested by the World Bank: | Element | Description | US\$ | |--|---|---------| | Potential volume of carbon dioxide equivalent emission reduction | Review of current HCFC applications and available non-HCFC alternatives; market analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy performance (taking into account ongoing work of TEAP and OORG) | 35,000 | | Barriers associated with conversion of HCFC technology with baseline energy and resource efficiency to low GWP alternatives with improved energy and resource efficiency | Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application | 50,000 | | Consumption and production of HCFCs | Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends | 10,000 | | Potential funding resources | Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources | 55,000 | | Development of funding criteria/standards/methodologies | Development of tools for capturing co-financing resources outside the MLF | 70,000 | | Stakeholder consultation meetings | 3 consultation meetings | 30,000 | | Total | | 250,000 | # **Secretariat's comments** - 11. Decision XIX/6 paragraph 11(b) of the Nineteenth Meeting of the Parties provided guidance to the Executive Committee to give priority to, *inter alia*, "substitutes and alternatives that minimize other impacts on the environment, including on the climate, taking into account global-warming potential, energy use and other relevant factors", when looking into HCFC phase-out projects. The Executive Committee at its 54th Meeting agreed on a set of guidelines for the preparation of HCFC phase-out management plans (HPMP), and at the 55th and 56th Meetings, approved funds for 115 countries for HPMP preparation. The guidelines agreed in decision 54/39 include the provision for Article 5 countries to consider financial
incentives and opportunities for co-financing in their final HPMPs, which could be relevant for ensuring that HCFC phase-out results in benefits in accordance with paragraph 11(b) of decision XIX/6 as mentioned above. - 12. The Secretariat also notes that with the results of the study proposed by the World Bank being available in 2010 or even later, it may assist countries only by providing guidance to the agencies in the implementation of stage 1 of the HPMP and in examining their options for co-financing for the preparation of stage 2, as appropriate. In addition, it also notes that there is so far no guidance from the Executive Committee on how climate benefits of HCFC phase-out are to be costed, and whether these costs could be considered as incremental costs under the Multilateral Fund. - 13. The Executive Committee at its 57th Meeting, discussed a facility for additional income from loans and other sources (document UNEP/OzL.Pro/ExCom/57/64), and decided in decision 57/37 that the Secretariat provide further analysis of this facility for consideration of the Committee at its 58th Meeting. - 14. At the 58th Meeting, the Executive Committee took decision 58/37 which included deferring consideration of this and another similar proposals to a future meeting. This proposal was therefore not discussed at the 58th Meeting. The Secretariat notes that the resubmission of this proposal to the 59th Meeting is for consideration by the Executive Committee in line with discussions under Agenda item 11, Further concept paper for a special funding facility for additional income from loans and other sources. The Secretariat also notes that in decision 58/37, the Executive Committee also accepted the World Bank's offer to make a presentation on "mechanisms, such as advanced commitments, for dealing with additional financing and blending Multilateral Fund funds with carbon financing". # Secretariat's recommendation 15. The Executive Committee may wish to consider this proposal in light of the information presented above, and in the discussion under Agenda item 11, Further concept paper for a special funding facility for additional income from loans and other sources. # 2009 WORK PROGRAM AMENDMENT # PRESENTED TO THE 59th MEETING OF THE EXECUTIVE COMMITTEE # WORLD BANK IMPLEMENTED MONTREAL PROTOCOL OPERATIONS **September 23, 2009** # WORK PROGRAM AMENDMENT FOR WORLD BANK-IMPLEMENTED MONTREAL PROTOCOL OPERATIONS - 1. The World Bank 2009 2011 Business Plan and the 2009 Work Program were submitted for the consideration of the 57th Meeting of the Executive Committee (ExCom) in March 2009. The 2009 -2011 Business Plan includes, among others, three renewals of existing institutional strengthening projects, one global study on resource mobilization to maximize climate benefits from HCFC phase-out, four demonstration projects, and three pilot ODS disposal projects. - 2. The funding requests for preparation of the global study on resource mobilization, four demonstration projects, and three pilot ODS disposal projects were made as part of the 2009 Work Program submission for the consideration of the 57th Meeting of the ExCom. - 3. At the 57th Meeting of the ExCom, project preparation funds for three demonstration projects for China, and two pilot ODS disposal projects for Indonesia and the Philippines, were approved. The proposed pilot ODS disposal project for Mexico was subsequently approved at the 58th Meeting of the ExCom. - 4. With regard to the proposed global study on resource mobilization to maximize climate benefits from HCFC phase-out, the ExCom decided that the activity should be maintained in the World Bank 2009 2001 Business Plan. The funding request to prepare this study as presented in the 2009 Work Program was not approved at the 57th Meeting as this proposal should be considered along with the on-going analysis of the Multilateral Fund Secretariat on the facility for additional income from loans and other sources. The funding request for this activity was resubmitted for the ExCom's consideration at the 58th Meeting of the ExCom. Since the ExCom's deliberation on the new funding facility is still on-going, the consideration on the proposed global study on resource mobilization was deferred. Therefore, the Bank is resubmitting this request as part of its 2009 Work Program Amendment for the consideration of the 59th ExCom Meeting. - 5. This World Bank 2009 Work Program Amendment proposes funding requests to support the following activities: (i) project preparation funds for development of an air-conditioning sector plan for the Philippines; and (ii) preparation funds for conducting the global study on resource mobilization. - **6.** Descriptions of four work program activities are included in Table 1. Table 1: Project Preparation Funding Requests Submitted for Consideration of the 59th Meeting of the Executive Committee | Country | Request (US\$) | Duration | Description | |-------------|----------------|-----------|---| | Philippines | 65,000 | January – | Development of a phase-out plan for the air-conditioning sector | # World Bank Montreal Protocol Operations # 2009 Work Program Amendment | | | December 2010 | and any other sectors to be identified by the HPMP preparation. | |--------------|---------|-------------------------------|--| | Global | 250,000 | January –
December
2010 | Resource Mobilization for HCFC Phase-out Co-benefits (Concept Note and cost breakdown included in Annex I) | | Support Cost | 23,625 | | | | Total | 338,625 | | | # Annex I CONCEPT NOTE RESOURCE MOBILIZATION FOR MAXIMIZING CLIMATE BENEFITS OF HCFC PHASE-OUT # BACKGROUND The Montreal Protocol on Substances that Deplete the Ozone Layer has been considered as one of the most successful global environmental treaties, as it has proven to be an effective instrument in bringing down consumption and production of the most potent ozone depleting substances (ODS) by more than 400,000 Mt within the last two decades. Consumption and production of CFCs, halons, and CTC will be completely phased out in less than 12 months, except for a limited quantity for essential uses. As most ODS are high global warming gases, phase-out of CFCs, halons, and CTC has also brought climate benefits. The Montreal Protocol in the last two decades has resulted in avoided emissions of high global warming gases equivalent to 25 billion tons of CO2, in comparison with the 2 billion tons of CO2-equivalent to be achieved under the first commitment period of the Kyoto Protocol.² However, phasing out of these potent ODS has resulted in increasing demand for several high global warming gases, including gases regulated under the Kyoto Protocol.³ For example, the demand for HFC-134a, a primary alternative for CFC in new refrigeration and air-conditioning applications, was more than 133,000 MT in 2002⁴ and could exceed 400,000 Mt by 2015.⁵ In the short term, replacing CFCs, which have significant higher global warming values than HFCs, resulted in significant climate benefits as mentioned above. With continuing growth in the demand for refrigeration and air-conditioning equipment particularly in developing countries, however, continuing dependence on HFCs could eventually pose a significant burden to the climate in the long run. The ozone and climate communities recognize the linkage between their efforts in protecting the ozone layer and the climate. Increasing efforts have been asserted in order to ensure synergy between the two associated global conventions. When the Parties of the Montreal Protocol decided in 2007 to accelerate the phase-out of HCFCs,⁶ it was ¹ 2007 Consolidated Progress Report, Multilateral Fund Secretariat, July 2008. ² Velder and al. 2007. The Importance of the Montreal Protocol in Protecting Climate, Vol 104. PNAS, ³ Emissions of greenhouses regulated under the first commitment period of the Kyoto Protocol (2008-2012) are CO₂, CH₄, N₂O, HFCs, PFCs and SF₆. ⁴ Consumption of HCFCs grew at an average growth rate of more than 20% a year from 1995 – 2001. Consumption continues to grow at almost the same rate from 2002 – 2007. ⁵ IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Chapter 11 ⁶ HCFCs are controlled by the Protocol since 1994 as "Annex C" substances. In 2007, the Parties of the Montreal Protocol negotiated an accelerated schedule of phase-out by ten years for all Parties for HCFCs. Developing countries have agreed to phase-out HCFCs by 2030. recognized that selection of alternative technologies for HCFCs should take into consideration climate impact and benefits. However, the accelerated phase-out of HCFCs could result in an unintentional growth of HFC demand as was the case for CFC phase-out; therefore, efforts should be made to ensure that more consideration be given to low GWP alternatives despite the fact that some alternatives will require higher investment capital.⁷ Under the current regulatory frameworks, neither the Montreal Protocol nor the Kyoto Protocol is systematically covering the costs associated with a transition to low GWP technologies. The Kyoto Protocol is covering the mitigation of emissions, while the concern will be at the production and consumption levels. The Montreal Protocol has proven to be an effective instrument to deal with phasing out of ODS at the production and consumption levels; however, HFCs, which are primarily used to replace ODS in the air-conditioning sector, are regulated under the Kyoto Protocol, a protocol that has demonstrated, through the Clean Development Mechanism, the effectiveness of market instruments to leverage funding for technology transfer in developing countries. Elements from both conventions can therefore be analyzed and compared to preempt an increase in the demand for HFCs or high GWP
gases. #### **OBJECTIVES** The objective of this study is to explore options for preempting an increase in the demand for HFCs or any other high global warming gases as a result of HCFC phase-out in developing countries. The study will review and examine potential mechanisms available for financing the transition to low GWP alternatives, including a scheduled phase-down of HFCs in developing countries and transition economies. This study will focus on direct emissions of chemicals; however, it recognizes that actions to reduce indirect emissions, such as energy efficiency improvement, can have a significantly higher impact than focusing strictly on chemical use. Therefore, the proposed study will also addresse technologies limitations and the tradeoff between energy efficiency gains and low GWP gases in order to maximize overall energy benefits. # HCFCs Phase-out Schedule of the Montreal Protocol As per Article 7 data reporting requirements under the Montreal Protocol, the total consumption of HCFCs of all developing country Parties in 2006, mainly HCFC-141b, HCFC-142b, and HCFC-22, is approximately 352,000 MT. Consumption of other HCFCs (for example, HCFC-123) represents only a small fraction of the HCFC 7 ⁷ Use of certain low alternatives may result in higher capital due to toxicity and/or flammability of product and the necessity to ensure that manufacturing facilities, production and servicing personnel are trained and equipped with appropriate safety equipment. ⁸ The State and Trends of the Carbon Market 2008, World Bank, 2008 reported a cumulative committed investment to CDM projects activities over 2002-2007 of about US\$59 billion, for an average leverage ratio of 3.8. ⁹ I IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Chapter 11. consumption of most developing countries. It is expected that consumption of HCFCs would continue to grow if there were no Montreal Protocol obligations, as demand for refrigeration and air-conditioning, and better insulation in developing countries is growing at a rapid pace. Based on the aggregate HCFCs consumption trends of developing countries in previous years, a growth rate of 9-10% per annum could be expected. By applying a 9% growth rate to the demand for each type of HCFCs, the total demand for HCFCs in developing countries could reach a level of as much as 2.78 million tons in 2030. The breakdown of projected HCFC demand in 2030 is shown in Table 1. <u>Table 1. Demand for HCFCs Under Business-as-Usual Scenario</u> in Developing Countries (in MT) | HCFC/Year | 2010 | 2015 | 2020 | 2025 | 2030 | |-----------|---------|---------|-----------|-----------|-----------| | HCFC-141b | 171,445 | 242,008 | 372,360 | 572,921 | 881,510 | | HCFC-142b | 45,070 | 63,620 | 97,887 | 150,611 | 231,734 | | HCFC-22 | 324,594 | 458,191 | 704,983 | 1,084,704 | 1,668,951 | | Total | 541,108 | 763,818 | 1,175,229 | 1,808,236 | 2,782,195 | Actual demand for HCFCs is expected to be much lower than the business-as-usual scenario, as the Montreal Protocol requires Article 5 countries to freeze HCFC consumption by 2013, followed by interim reduction steps leading to a complete phase-out by 2030, excepting a small quantity for meeting the servicing tail up to 2040. Fig. 1. HCFC Allowance Production and Consumption Schedule in Developing Countries With the accelerated HCFC phase-out schedule of the Montreal Protocol, a total HCFC consumption of 21 million MT could be avoided during the period 2013-2030. This avoided consumption would result in early introduction of alternatives. Climate impacts ¹⁰ For illustration purposes, it is assumed that the same demand growth for the BAU scenario and the same reduction schedule are applied to each HCFC. or benefits are, therefore, dependent on the choices of alternatives to be adopted by Parties to the Montreal Protocol. Fig. 2 Estimated consumption of HCFCs and alternatives for 2013-2030 If the avoided consumption (the red area in Fig. 2) is replaced by low GWP alternatives, the total climate benefits from the accelerated HCFC phase-out schedule (excluding impacts from improved or inferior energy efficiency performances) could be as high as 30.5 Gt of CO₂ equivalent by 2030.¹¹ As early phase-out of HCFC-22 also results in avoided production of byproduct HFC-23, the accelerated HCFC phase-out schedule contributes therefore to additional indirect emission reductions of 5.6 Gt of CO₂ equivalent associated with avoided production of HFC-23.¹² # **NON-HCFC ALTERNATIVES** Major applications of HCFC-22, HCFC-141b, and HCFC-142b in developing countries are in the refrigeration, air-conditioning, and foam sectors. Alternatives to these HCFC applications include HFCs, which have high global warming potential values, and hydrocarbons (HC), CO₂ and ammonia, which have lower GWP values. Currently available non-HCFC alternatives for various applications are summarized in Appendix 1. Selection of alternatives depends on the desired product quality and safety. For example, hydrocarbons, which are flammable, may not be desirable for certain applications. Certain alternatives may also compromise product quality (such as insulation performance of insulation foam products. _ ¹¹ Assuming that HCFCs are replaced by only low GWP alternatives. ¹² Assuming 3% byproduct HFC-23 in the HCFC-22 production, refer to HCFC Phase-out under the Montreal Protocol - Introductory Note on a Programmatic Approach, Montreal Protocol Operations, World Bank, 2008 # CLIMATE IMPACT OF HCFC PHASE-OUT The ozone depleting substances (HCFCs) are also high global warming gases, the phase-out of these chemicals presents an opportunity to maximize climate benefits, including energy efficiency gains and uses of low GWP alternatives. Alternatives currently available for replacing HCFCs consist of high global warming gases such as HFCs, low GWP gases such as hydrocarbons, CO2 and ammonia. Selection of these substances would have to take into account a number of factors ranging from desired product qualities, flammability, toxicity, and associated costs of using such alternatives, including energy consumption and servicing aspects. In terms of climate benefits, the selection of alternative gases, should not only focus on low GWP of alternatives, but should also cover energy efficiency benefits that could be gained over the lifetime of the equipment. This is particularly true for the foam products, air-conditioning and refrigeration equipment that are generally made with a small quantity of HCFCs, but are characterized by long product lifetime. Alternatives could be categorized according their energy efficiency potential and GWP of the products (refer to appendix 2). # ADDITIONALITY OF CLIMATE BENEFITS ASSOCIATED WITH ACCELERATED HCFC PHASEOUT To meet the accelerated HCFC phase-out schedule stipulated by the Montreal Protocol, major policies and actions must be undertaken to minimize the current demand of HCFCs and future dependence on HFCs. Restricting manufacturing of new HCFC-based equipment is also another important measure to avoid the build-up of HCFC demand for servicing this equipment in the future. Restricting production of new HCFC-based equipment and products could be applied to existing manufacturers or manufacturing capacity by providing them with incentives for early conversion. Establishment of new manufacturing capacity based on HCFC technologies should also be prohibited. Recovery, recycling and reuse of HCFCs, particularly HCFC-22 which represents more than 80% of the total consumption in most developing countries, would assist countries to meet their Montreal Protocol obligations. Since the Montreal Protocol defines consumption as production plus import and minus export, recycled HCFC-22 would replace the need for production and/or import of virgin HCFC-22 which in turn assists countries in meeting their consumption limit. Replacement of HCFC-based equipment would also contribute to significant reduction in HCFC demand. Given that HCFC-based equipment or products (e.g., air-conditioning equipment, insulation foams, and etc.) have a long product life, early replacement of these items could be costly and not financially viable. Based on experience from CFC phase-out, early replacement of HCFC-based equipment or products could be viable when new products are more energy (and resource) efficient. As there have been a number of projects addressing this issue, this option will not be addressed in this proposed study. As pointed out earlier, replacement of HCFCs in most applications could be done via both low and high GWP alternatives. In most cases, applications of low GWP technologies in the foam and refrigeration sectors could result in lower product costs. However, because of related toxicity and/or flammability issues of these low GWP alternatives, higher capital investments are required to ensure that manufacturing facilities, production and servicing personnel are trained and equipped with necessary safety equipment. Conversion costs could be prohibitive, particularly for small-and-medium scale enterprises. The CFC phase-out experience clearly demonstrates that while cyclopentane is available as a foam blowing agent, all small-and-medium scale enterprises opt for HCFC-141b as initial investments are much lower. Hence, the preferred choice for phasing out of HCFC in the foam sector for small-and-medium scale enterprises could as well be HFCs, rather than cyclopentane. Common HFCs for foam blowing applications include HFC-134a, HFC-152a, HFC-245fa, HFC-365mc, and HFC-227ea. These chemicals have GWP many times higher than hydrocarbon alternatives (with GWP of less than 25) (Appendix 3). Similarly, HCFC-22 refrigerant in the refrigeration and air-conditioning applications could be replaced by either low or high GWP refrigerants (i.e, hydrocarbons, ammonia, carbon dioxide, and HFCs). For developing countries in particular where the demand of residential
air-conditioners is rapidly increasing, selection of appropriate alternatives to HCFC-22 refrigerant would render significant climate benefits. Currently, HFC-410A, which has a high GWP value, seems to be an alternative of choice. Extensive research and development has been put in place to improve energy efficiency of new HFC-410A residential air-conditioners. Providing that similar energy efficiency could be achieved by hydrocarbon technology, replacing HCFC-22 with hydrocarbon refrigerant could contribute additional benefits to the climate since GWP of hydrocarbon refrigerant are more than 100 times lower than HFC-410A. However, safety concerns on the flammability of hydrocarbons could prevent a large-scale adoption of this technology. Extensive training of production and servicing personnel may be required in order to employ this technology safely. More awareness for end-users is also equally important in order to educate consumers of the safe use of these products. Recovery and recycling of HCFC-22 during servicing and maintenance of refrigeration and air-conditioning equipment is considered as an eligible activity for funding from the Multilateral Fund. Thus far, the Multilateral Fund has allocated significant resources to support establishment of recovery and recycling networks in almost all developing country Parties of the Montreal Protocol. In addition, training on better containment (reducing leak, recovery and recycling, and reuse) has also been one of the core activities funded by the Multilateral Fund. Experience from CFC recovery and recycling, thus far, is not encouraging. Implementation of recovery and recycling practice is more desirable financially when servicing equipment with a large refrigerant charge size. For example, recovery and recycling of refrigerants in large industrial and commercial refrigeration systems and in large chillers are common. However, recovery and recycling of CFCs from mobile airconditioning equipment and domestic refrigerators have not shown a similar success as the price of CFCs and the quantity of CFCs that could be recovered from each unit are low. It is expected that the economic of recovery and recycling HCFC-22 from residential air-conditioning units would probably be similar to recovery and recycling of CFCs from mobile air-conditioning equipment and domestic refrigerators. A combination of the low price of HCFC-22 and a small charge size of HCFC-22 in each piece of equipment, and high transaction costs to implement recovery and recycling HCFC-22, makes the recovery and recycling practice less financial attractive to most service technicians. Potential climate benefits of recovery and recycling HCFC-22 warrants further consideration as it leads to a lower requirement for production of virgin HCFC-22. Excluding the direct GWP associated with HCFC-22, recovery and recycling of one MT of HCFC-22 reduces emission of 30 kg of byproduct HFC-23 from production of one MT of virgin HCFC-22 or about 420 MT of CO₂ equivalent. This significant climate benefits render opportunity to mobilize additional resources to lower high transaction costs of implementing the recovery and recycling practice experienced by service technicians. # PROPOSED STUDY As indicated above, HCFC phase-out could result in an increased use of HFCs. In order to maximize benefits of both ozone layer protection and climate protection, a synchronized strategy for managing the use of HCFCs and phasing-down HFCs could assist Parties to the Montreal Protocol to develop a conducive environment for climate friendly technologies. This would also assist industries in developing countries to avoid two-steps conversion to low GWP technologies (from HCFC to HFC and to low GWP alternatives). To support market penetration of low GWP technologies, financial incentives within and outside the Multilateral Fund should be considered in order to offset higher costs, if any, of adoption of low GWP technologies. In addition, consumption and production of HFCs including those produced as byproducts of other chemical processes will also be considered. Since all Parties to the Montreal Protocol are now in the process of developing their HCFC phase-out strategies, it is an opportune time for Parties to also consider their HFC strategy as part of their response to the call for more consideration of other environmental benefits, particularly the climate benefits, when phasing out HCFCs. Based on the business-as-usual scenario, it is obvious that the need for HFCs equipment or products (e.g., air-conditioning and insulation foam products) will continue to grow in spite of the HCFC phase-out schedule under the Montreal Protocol. Hence, to minimize the growth of HFCs the choice of technologies to be made by existing manufacturing facilities of those products currently produced with or containing HCFCs not only has to be considered, but also the choice of technologies for facilities to be established in the future in order to meet the demand of these products. # **OBJECTIVES OF THE STUDY** While HCFC phase-out renders two climate benefit opportunities: (i) improved energy efficiency; and (ii) use of lower GWP chemicals, the proposed study will focus on resource mobilization to support the latter, but will addressed technologies limitations and tradeoff between energy efficiency gains and low GWP gases. The study will focus on resource mobilization to support projects aiming at reducing use of HFCs¹³ as a result of HCFCs phase-out and reducing HFCs as a byproduct from HCFC production. # SCOPE OF THE STUDY The study will investigate: (i) review of tradeoff between energy efficiency gains and low GWP gases; (ii) costs and barriers associated with conversion of HCFC technology with to low GWP alternatives; (iii) volume of HFCs and equivalent in carbon dioxide equivalent associated with the consumption and production in developing countries and transition economies including those produced as byproducts of other chemical processes; and (iiv) potential funding resources (e.g., Multilateral Fund, Carbon Market, Carbon Partnership Funds, Clean Technology Fund, and etc.) to support adoption of better HCFC containment practice, and climate friendly technologies (v) recommendations (or development of a) for a funding methodologies such as approaches to evaluate and setting the baseline consumption and production of HFCs, etc. In addition, the study will investigate effective modalities for implementing these activities in order to ensure seamless synergy between the MLF funded activities and activities funded by resources outside the MLF. Based on experience from CFC phase-out, it is anticipated that HCFC phase-out will involve a large number of beneficiaries. Moreover, HCFC phase-out strategies and HFC strategies may require not only investment and technical assistance activities but also a combination of policy and timely investment interventions to ensure cost-effective means of achieving the targets. Experiences from implementation of CFC phase-out activities in the last two decades clearly demonstrate effectiveness of sectoral or national approaches whereby policy and investment activities are carried out in chronology. Similarly, the climate community also recognizes the need to scale up its CDM activities. Recently, a program of activity approach has been adopted by the CDM Board. There are some similarities between the sectoral or national approaches under the Multilateral Fund and the CDM program of activity approach. The study will review these different approaches and offer recommendations to synchronize implementation 11 ¹³ It includes HFCs used as a result of CFC phaseout and possibly HCFC phase-out. For example, the study will explore financing opportunities for replacing HFC-134a MACs with low GWP alternatives. modalities as well as to synchronize, to the extent possible, monitoring and verification procedures that may be required by the MLF mechanism, CDM mechanism, and other potential funding mechanisms. ### STUDY APPROACH The study will entail a desk review of the on-going study on HCFC alternatives and their climate benefits being conducted by UNEP TEAP under the auspices of the Montreal Protocol, the cost study being carried out by the Multilateral Fund, all applicable CDM methodologies, proposed approaches under negociations by the climate community, funding mechanisms outside UNFCCC and MP such as the Clean Technology Carbon Partnership Funds, Clean Technology Fund and others. Findings of the desk review will lead to recommendations or development of a funding methodologies for potential funding sources. The study will also include workshops to inform developing countries of findings of the study, which will lead to identification of potential pilot projects in a few developing countries. #### **TIMEFRAME** Detailed terms of reference for this study will be submitted for the consideration of the Executive Committee at its 58th Meeting in July 2009. The study will then take about 12 months to complete. The final report of the study will be submitted to the ExCom at its 62nd Meeting in November 2010. **Appendix 1: Non-HCFC Alternative Matrix** | Sector | Sub-sector | HCFCs Currently Used | Alternative Options | |------------------|--------------------------------------|--|---| | Foam | XPS | HCFC 22/HCFC 142b
(blends), HCFC 22,
HCFC 142b | CO ₂ , CO ₂ /Ethanol,
CO ₂ /HCs; HFC 134a | | | Polyurethane Spray | HCFC 141b, minor use
of HCFC 141b/HCFC
22 | HFC, CO_2 (CO_2 not
preferred option if superior
thermal insulation
performance is required.) | | | Domestic
refrigerators/freezers | HCFC 141b, minor use
of HCFC 141b/HCFC
22 | HFC, HC (Small enterprises use HFCs) | | | Commercial
refrigerators/freezers | HCFC 141b | HFC, HC,
CO_2 (Adhesion problem with CO_2) | | | Sandwitch panels -
continuous | HCFC 141b | нгс, нс | | | Sandwitch panels -
discontinuous | HCFC 141b | HFC, HC | | | Insulated pipes | HCFC 141b | HFC, HC | | | Integral skin foams | HCFC 141b | HFC 134a, CO ₂ , HC | | | Supermarket | | R-404A, CO $_2$, HCs and | | Refrigeration | refrigerators | HCFC 22 | Ammonia (R-717) | | | Industrial
refrigeration | HCFC 22 | R-717, CO ₂ | | | Transport | | HFC 134a, R-404A, R- | | | refrigeration | HCFC 22 | 410A | | Air-conditioning | Air-conditioning | HCFC 22 | R-410A, HCs, CO $_2$ | | | Water -heating heat
pumps | HCFC 22 | HFC 134a, R-410A, CO ₂ | | | Chillers | HCFC 22 | HFC 134a | Source: OORG Presentations, OORG Meeting, October 2008, Washington DC Note: R-404A and R-410A are HFC blends. # **Appendix 2: Selection of HCFC's Alternatives and Climate Considerations** In terms of climate benefits, it could be described that the available alternatives in the consumption sector can be categorized according to Figure 3. These four regions represent: - Region I Low GWP alternatives with improved energy and resource efficiency or thermal insulation property of the final products; - Region II High GWP alternatives with improved energy and resource efficiency or thermal insulation property of the final products; - Region III Low GWP alternatives with inferior energy and resource efficiency or thermal insulation property of the final products when compared with HCFC products; - Region IV High GWP alternatives with inferior energy and resource efficiency or thermal insulation property of the final products when compared with HCFC products. Fig. 3 Characteristics of Non-HCFC Alternatives Foam products, air-conditioning and refrigeration equipment, are made with a small quantity of HCFCs. However, they have a long product lifetime. Therefore, any alternatives of HCFCs that fall in Regions III and IV are not desirable. For example, replacing HCFCs with low GWP alternatives (Region III) but resulting in low energy efficiency or insulation property, could result in higher energy consumption during the lifetime of these products. Emissions of carbon dioxide during the lifetime of the products normally are many times higher than the difference between the GWP values of HCFCs and alternatives used for manufacturing or maintaining these products. Alternatives in Region IV are even less desirable. Appendix 3: GWP of HCFCs and HFC alternatives¹⁴ | Substance | GWP | |---------------------|-------| | HCFC-22 | 1,700 | | HCFC-141b | 630 | | HCFC-142b | 2,000 | | HFC-134a | 1,300 | | HFC-152a | 140 | | HFC-245fa | 820 | | HFC-365mc | 840 | | HFC-227ea | 2,900 | | HFC-23 | 14800 | | R-410A (HFC Blends) | 2,100 | | R-404A (HFC Blends) | 3,900 | | R-407C (HFC Blends) | 1,800 | Note: R-404A, R-407C, and R-410A are HFC blends 20 _ ^{14 2006} UNEP Technical Options Committee Refrigeration, A/C and Heat Pump Assessment Report **Appendix 4: Preparation Cost Breakdown** | Review of current HCFC applications and available non-HCFC alternatives; market analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy and resource performance (taking into account ongoing work of TEAP and OORG) Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie of apturing co-financing resources outside the MLF Review of custing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie capturing co-financing resources outside the MLF Stakeholder Consultation | Element | Description | US\$ | |--|------------------------------|------------------------------------|--------| | HCFC alternatives; market analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy and resource performance (taking into account ongoing work of TEAP and OORG) Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie soutside the MLF Time Potential Funiding Criteria/Standards/Methodologies outside the MLF Time Potential Funiding Criteria/Standards/Methodologies on performance (taking into account ongoing work of TEAP and OORG) Time Potential Funiding Criteria/Standards/Methodologie outside the MLF Time Potential Funiding Carbon for capturing co-financing resources outside the MLF | | Review of current HCFC | | | analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy and resource performance (taking into account ongoing work of TEAP and OORG) Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or project funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such Potential Funidng Resources Development of Funding Criteria/Standards/Methodologie s Development of Funding Criteria/Standards/Methodologie outside the MLF Toology With a selected number of Article 5 countries and Article 5 countries that are major technology providers for each HCFC application Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or project funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie outside the MLF Toology With aselected number of Endon OORG) Toology Potential Standards outside the MLF Toology Potential Standards outside
standards outside the MLF | | * * | | | alternatives (high and low GWP) and estimates on benefits from improved energy and resource performance (taking into account ongoing work of TEAP and OORG) Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Consumption and Production of HCFCs Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie soutside the MLF Technology and resource performance (taking into account ongoing work of TEAP and OORG) 35,000 Article 5 countries and Article 5 countries and Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie sutside the MLF Technology providers for EAP and OORG) Technology providers for each HCFC application Thus trial survey in a selected number of Article 5 countries and Article 2 countries and Article 5 | | HCFC alternatives; market | | | and estimates on benefits from improved energy and resource performance (taking into account ongoing work of TEAP and OORG) Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s and estimates on benefits from improved energy and resource performance (taking into account ongoing work of TEAP and OORG) 35,000 Article 2 countries and Article 5 countries and Article 5 and non-Article 5 countries; market analysis to project funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie soutside the MLF 70,000 | | analysis on penetration of various | | | Potential Volume of Carbon Dioxide Equivalent Emission Reduction Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Technology with Baseline Energy and Resource Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s improved energy and resource performance (taking into account ongoing work of TEAP and 35,000 35,000 Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application 50,000 Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends 10,000 Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources 55,000 Development of tools for capturing co-financing resources outside the MLF | | . • | | | Potential Volume of Carbon Dioxide Equivalent Emission Reduction Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Consumption and Production of HCFCs Consumption and Production of HCFCs Review of existing activities or project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Potential Funidng Resources Potential Funidng Resources Potential Funidng Criteria/Standards/Methodologies s Potential Funidng Criteria/Standards/Methodologies s Potential Funidng Criteria/Standards/Methodologies s Potential Funidng Criteria/Standards/Methodologie outside the MLF Potential Funidng Criteria/Standards/Methodologies s Potential Funidng Criteria/Standards/Methodologie outside the MLF | | and estimates on benefits from | | | Dioxide Equivalent Emission Reduction Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s ongoing work of TEAP and OORG) 35,000 35,000 10,000 | | improved energy and resource | | | Reduction Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 Consumption and Production of HCFCs Review of existing activities or project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | Potential Volume of Carbon | | | | Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Consumption and Production of HCFCs | = | | | | Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application 50,000 Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application 50,000 Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application 50,000 Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application 50,000 Industrial survey in a selected number of Article 5 countries and Topodor
Topodo | | OORG) | 35,000 | | Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Efficiency Efficiency Efficiency Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s outside the MLF Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major technology providers for each HCFC application Sto,000 Sto,000 Industrial survey in a selected number of Article 2 countries and Article 2 countries that are major technology providers for each HCFC application 50,000 Industrial survey focusing on chemical producers in both Article 5 countries; market analysis to project trends 10,000 Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources 55,000 | | | | | Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Efficiency Consumption and Production of HCFCs Project trends Consu | | | | | to Low GWP Alternatives with Improved Energy and Resource Efficiency Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 Consumption and Production of HCFCs Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such Potential Funidng Resources Development of Funding Criteria/Standards/Methodologie s Article 2 countries that are major technology providers for each HCFC application 50,000 Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | Technology with Baseline | • | | | Improved Energy and Resource Efficiency Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such Potential Funidng Resources Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | | number of Article 5 countries and | | | Efficiency HCFC application 50,000 Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends 10,000 Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s outside the MLF 70,000 | | _ | | | Industrial survey focusing on chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Potential Funidng Resources Development of Funding Criteria/Standards/Methodologie s outside the MLF To,000 | Improved Energy and Resource | technology providers for each | | | chemical producers in both Article 5 and non-Article 5 countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Chemical producers in both Article 5 countries; market analysis to project trends 10,000 Article 5 countries in Article 5 countries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources 55,000 Development of tools for capturing co-financing resources outside the MLF 70,000 | Efficiency | HCFC application | 50,000 | | Consumption and Production of HCFCs Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Article 5 and non-Article 5 countries; market analysis to project trends 10,000 10 | | , | | | Consumption and Production of HCFCs Countries; market analysis to project trends Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such Potential Funidng Resources Development of Funding Criteria/Standards/Methodologie securing co-financing resources outside the MLF 70,000 | | <u> </u> | | | HCFCs project trends 10,000 Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie substituting co-financing resources outside the MLF 70,000 | | | | | Review of existing activities or projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie Substituting co-financing resources outside the MLF Review of existing activities or projects such was included by various funding and projects funded by various funding activities or activities activities or projects funded by various funding fun | 1 | - | | | projects funded by various funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | HCFCs | 1 7 | 10,000 | | funding mechanisms; review existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources
Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | | | | | existing CDM and non-CDM methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | | | | | methodologies; interview with prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie Substituting Control outside the MLF To,000 | | | | | prospective beneficiaries in Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | | _ | | | Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie S Criteria/Standards/Methodologie S Criteria/Standards/Methodologie S Article 5 countries; identification of potential sources of financing; development of approaches and project model for securing such resources Development of tools for capturing co-financing resources outside the MLF 70,000 | | | | | of potential sources of financing; development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Of potential sources of financing; development of approaches and project model for securing such resources Development of tools for capturing co-financing resources outside the MLF 70,000 | | 1 | | | development of approaches and project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | | | | | project model for securing such resources Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | | | | | Potential Funidng Resources resources 55,000 Development of Funding Criteria/Standards/Methodologie s outside the MLF 70,000 | | | | | Development of Funding Criteria/Standards/Methodologie s Development of tools for capturing co-financing resources outside the MLF 70,000 | | | | | Criteria/Standards/Methodologie capturing co-financing resources outside the MLF 70,000 | Potential Funidng Resources | resources | 55,000 | | Criteria/Standards/Methodologie capturing co-financing resources outside the MLF 70,000 | Development of Funding | Development of tools for | | | s outside the MLF 70,000 | 1 | capturing co-financing resources | | | Stakeholder Consultation | | , , , | 70,000 | | Manyingiae edinalialidi | Stakeholder Consultation | | | | Meetings 3 consultation meetings 30,000 | | 3 consultation meetings | 30,000 | | Total 250,000 | | | |