EP

Distr.

GENERAL

UNEP/OzL.Pro/ExCom/57/21

3 March 2009

ARABIC

ORIGINAL: ENGLISH

2009 / 3 - / 30

2009

.

700 000 -1 . 52 500 2009 :2009 1 -2

____:1

()	()	1	
,	,		:
		:	.1
100 000	100 000	·	
100 000	100 000		
60 000	60 000		
160 000	160 000	:1	
			:
*	T	:	:1
*	30 000		
^	30 000		
*	80 000		
	140 000	:1	
		:	.2
*	50 000		
*	50 000		
*	50 000		
*	150 000	:2	
			.3
*	250 000		
	2.70.000		
160.000	250 000	:3	
160 000	700 000	:	
12 000	52 500	7,5)	
		9 250 000 :(250 000	
172.000	752 500		
172 000	752 500	:	*

^

			:
			.1
			:
		(100 000)
			-3
			•
250, 200			-4
250-200			30
	•	200-100	
			.2015 2013
			.2010 2010
	16/56		_
2007	16/56	300-11	-5
		200 000	
7			286,8
			-6
. 4			O
		·	_
90 000 190 000		(18/57)	-7
		200 0	00

-12

.16/56 10 000 -8 100 000 7 500 .2015 2013 60 000 : -9 -10) 55-50 (22-.2015 2013 16/56 -11 2007 100 100 000 15,4 7

.2015 2013

.

.2015 2013

			:	
:				.1
			_ ()	
		30 00		
		:	()	
		30 000 :	-	
		:	_ ()	
		80 00	0	
				-
			45	
15			()	
	.2007	141-		
245-				
aerbin Tianshuo Construct	ion			
1993		Materials Industry Co. Lt	d	
			()	
			,	
•	141-	500		
		66 40		
Jiangsu Huaiyin F	Iuihuang Solar Energy C	o. Ltd		
	.1993	·		
			()	
0-8		11-		
		·		
luangdong				

	wannua Rongwei Polyurethanes Co. Ltd1991			
			1	-16
		()16/56 ()	-17
	()43/55			-18
1995 / .1995	/ 25		7/17	-19
: 30 000 :	()16/ 2 250	/56 ()43/55		-20
2 250		30 000	O :	()

80 000 :	6 000	()	
:		.2	
		-21	
	(
		-22	
		. 99,99	
		-23	

	-2012	2011	2010	2009	
	2015				
60			60		
12			12		
775	540	135	100		

50 000 : :

						-24
50 000	n ·			٠		
 30 000	<i>J</i> .				·	
						-25
	0 000 :	11-		1	12-	:
	0 000 1					<u> </u>
)			.(134-		-26 12
			7/XX		2	-27
	7/	XXX	. 2			
						-28
						-29

-31

. . .

-30

.26/V

-32

-33

-34

				-35
			/	-36
<u>250 000 :</u>	·			.3
230 000 .				· · · · · · · · · · · · · · · · · · ·
250 000				-37
				-38
•				
(2)		(1) :		-39
(3)	()	

11

(4)

.

.2009 /

. 12

.2010

: 250 000 -41

)			
		(
	()			
35 000					
	5	2			
50 000					
10 000	5	5			
10 000					
		5			
55 000		\mathcal{J}			
				/ /	
70 000					
30 000			3		
250 000					

6/XIX ()11 -42

.

UNEP/OzL.Pro/ExCom/57/21

				5			39/54	-43
2010	2	1			6/XIX	()1	I	-44
								-45
	1		.2			·	10	
								-46 14

2009 WORK PROGRAM

PRESENTED TO THE 57th MEETING OF THE EXECUTIVE COMMITTEE

WORLD BANK IMPLEMENTED MONTREAL PROTOCOL OPERATIONS

February 12, 2009

WORK PROGRAM FOR WORLD BANK-IMPLEMENTED MONTREAL PROTOCOL OPERATIONS

- 1. This proposed work program for Bank-Implemented Montreal Protocol Operations is prepared on the basis of the World Bank 2009 business plan also being submitted to the 57th meeting of the Executive Committee. The proposed 2009 business plan consists of investment and non-investment activities to assist Article 5 countries in adhering to their freeze obligations, and meeting their 85% and 100% reduction targets for Annex A and B chemicals. The proposed 2009 business plan also include activities that are necessary to assist Article 5 countries to meet their first two HCFC reduction targets (i.e., freeze in 2013 and 10% reduction in 2015).
- 2. The total amount of deliverables in the proposed 2009 World Bank business plan, including investment and non investment activities amounts to US\$32.78 million, including agency support costs. Funds will be used towards new and previously approved activities, which combined will capture an estimated 2,886 ODP tonnes in 2009.
- 3. The proposed 2009 business plan includes deliverables of 16 investment activities in 8 countries, totaling roughly US\$29.44 million. These include annual work programs for 12 previously approved multi-year projects and four new HCFC phaseout demonstration projects in the foam sector.
- 4. The proposed 2009 business plan allocates US\$23.8 million (roughly 81% of the total investment deliverables for the year) to support annual work programs of the Argentina, China, and India CFC production closure projects, and the China and India CTC production closure activities.
- 5. In 2009, requests to support implementation of previously approved phaseout and sector plans will include subsequent funds for: i) approved CFC phaseout plans in Antigua and Barbuda, Malaysia, Tunisia, and Thailand; ii) a commercial refrigeration sector plan for Turkey; iii) CTC phaseout plans for India, Malaysia and Thailand; iv) two process agent phaseout plans for China; and v) two methyl bromide phaseout plans in Thailand and Vietnam.
- 6. Other than deliverables for ongoing multi-year agreements, the proposed 2009 Business Plan includes four HCFC phaseout demonstration projects in the foam sector for China.
- 7. The proposed 2009 business plan includes requests to extend support for implementation of four existing institutional strengthening projects in Ecuador, Jordan, and Thailand, totalling US\$0.72 million.
- 8. The proposed 2009 business plan also includes a request to carry out a comprehensive study on resource mobilization to maximize climate benefits from HCFC phaseout. The concept note of this proposed activity along with cost breakdown for

conducting this proposed study is included in Annex I. Detailed terms of reference for this proposed study will be submitted at the 58th Meeting of the ExCom.

- 9. The proposed 2009 work program, which is being submitted for consideration at the 57th Meeting of the ExCom, includes nine project preparation funding requests: four are for development of demonstration projects, two for preparation of HCFC phaseout sector plans, and the remaining three for development of pilot ODS disposal projects.
- 10. Descriptions of nine project preparation funding requests are included in Table 1. Justifications for four demonstration projects in the foam sector for China are summarized in Table 2.

Table 1: Project Preparation Funding Requests Submitted for Consideration of the 57th Meeting of the Executive Committee

~ .	<u> </u>		the Executive Committee
Country	Request	Duration	Description
	(US\$)		
China	30,000	April –	Preparation of demonstration project for phaseout of HCFC in
		December	spray foam
		2009	
China	30,000	April –	Preparation of demonstration project for phaseout of HCFC in
		December	foam insulation for water heaters
		2009	
China	80,000	April –	Preparation of demonstration project for foam system house
		December	
		2009	
Indonesia	100,000	April 2009 –	Preparation of the foam sector plan
		December	
T 1 1 1	7 0.000	2010	D
Indonesia*	50,000	April 2009 –	Preparation of pilot ODS disposal project
		December	
Manian *	50,000	2010	Description of pilot ODS discoord assists
Mexico*	50,000	April 2009 – December	Preparation of pilot ODS disposal project
		2010	
The Philippines*	50,000	April 2009 –	Preparation of pilot ODS disposal project
The Timppines	30,000	December	Treparation of phot ODS disposal project
		2010	
Sri Lanka	60,000	April 2009 –	Preparation of a refrigeration and a/c sector plan
SII Zuiiku	00,000	December	Troparation of a reingeration and the sector plan
		2010	
Global	250,000	April 2009 –	Resource Mobilization for HCFC Phaseout Co-benefits (Concept
	Ź	December	Note and cost breakdown included in Annex I)
		2010	
Support Cost	52,500		
Total	752,500		

^{*}Refer to Annex II.

Table 2: Detailed Descriptions and Justifications for HCFC Phaseout Demonstration Projects

Project title	Description/reason for demonstration	Prep. Funds (USD)	Estimated Project Cost (USD)	Substitute Technology	HCFC- 141b (ODS tons)	Time Schedul e (months
1. Demonstration project for development of a foam system house with non-HCFC blowing agents	Using polyol system houses as project implementers has been proven as a cost effective implementation modality for phasing out of CFC-11 in many countries. This modality has not yet been used in China; China therefore wants to test the modality through a demonstration project involving one existing system house and 8-10 smaller foam enterprises. The majority of the foam enterprises in China are smaller foam enterprises. We would also like to test the feasibility of using preblended polyols and hydrocarbons. The project activities/costs consist of the following: a. development, validation process, and provision of technology transfer; b. Setup of a facility for premixing hydrocarbon and polyol. c. Modification of foam equipment and facilities for using preblended polyol at each of the participating foam companies. Level of safety measures should be identified and evaluated. d. Technical assistance/training to each of the participating foam enterprises; e. Trial production; and f. Operating costs/savings will be requested for a two year period consistent with existing ExCom guidelines for the foam sector.	80,000	1,200,000 (estimated based on existing ExCom guidelines and policies)	Hydro- carbon	80-100 T	18

Project title	Description/reason for demonstration	Prep. Funds (USD)	Estimated Project Cost (USD)	Substitute Technology	HCFC- 141b (ODS tons)	Time Schedul e (months
2. Demonstration project for hydrocarbon blowing agent application in the sub-sector of solar energy appliances	PU foam is used for insulation of water heaters and tanks in solar heating systems. Use of solar energy appliances has been growing quickly in recent years. It is estimated that over 500 enterprises are involved in this sub-sector in China. The project is proposed to demonstrate the use of hydrocarbon as a substitute to HCFC-141b in solar energy appliances. An existing solar heater company with a solar panel production facility will be selected to implement this project. As a company with HCFC-141b consumption level of 40-60 ODS tons should replace HCFC-141b with hydrocarbon, it is important to demonstrate and evaluate the technology and cost. The project activities/costs will consist of the following: a. Retrofitting or replacing existing foam equipment for the use of hydrocarbon; b. Modification of the foaming facility for the use of hydrocarbon and installation of necessary safety measures; c. Installation of hydrocarbon storage tank and a premixing unit; d. Technical assistance/training; e. Trial production; f. Operating costs/savings will be requested for a two year period consistent with existing ExCom guidelines for the foam sector.	30,000	780,000 (estimated based on existing ExCom guidelines and policies)	Hydro- carbon	40-60T	18

Project title	Description/reason for demonstration	Prep. Funds (USD)	Estimated Project Cost (USD)	Substitute Technology	HCFC- 141b (ODS tons)	Time Schedul e (months
3. Demonstration project for HCFC-141b phaseout in spray foam sub-sector	Based on available data, the use of HCFCs has grown significantly during the past 6 years. It is estimated that approximately 15 percent of HCFC-141b in 2007 was used in the spray foam sub-sector. The project is proposed to demonstrate the use of a suitable substitute to HCFC-141b in this sub-sector. Substitute technology is to be selected. The following estimated cost is based on the use of HFC-245fa as substitute. An existing foam enterprise will be selected to implement this project. The project activities/costs consist of the following: a. Retrofitting of an existing foam equipment for the use of e.g. HFC substitute; b. Technical assistance/training; c. Trial production; and d. Operating costs/savings will be requested for a two year period consistent with existing ExCom guidelines for the foam sector.	30,000	300,000 (estimated based on existing ExCom guidelines and policies)	HFC-245fa or liquid CO2	20-30T	12

Annex I CONCEPT NOTE RESOURCE MOBILIZATION FOR MAXIMIZING CLIMATE BENEFITS OF HCFC PHASE-OUT

BACKGROUND

The Montreal Protocol on Substances that Deplete the Ozone Layer has been considered as one of the most successful global environmental treaties as it has proven to be an effective instrument in bringing down consumption and production of the most potent ozone depleting substances (ODS) by more than 400,000 Mt within the last two decades¹. Consumption and production of CFCs, halons, and CTC will be completely phased out in less than 12 months, except for a limited quantity for essential usages.

As most ODS are high global warming gases, phase-out of CFCs, halons, and CTC has also brought climate benefits. The Montreal Protocol in the last two decades has resulted in avoided emissions of high global warming gases equivalent to 25 billion tons of CO2 equivalent in comparison with 2 billion tons of CO2 equivalent to be achieved under the firs the commitment period of the Kyoto Protocol².

However, phasing out of these potent ODS has resulted in an increasing demand for high global warming gases including gases regulated under the Kyoto Protocol³. For example, the demand for HFC-134a, which is a primary alternative for CFC in new refrigeration and air-conditioning applications, was more than 133,000 Mt in 2002⁴ and could exceed 400,000 Mt by 2015⁵. In the short term, replacing CFCs, which have significant higher global warming values than HFCs, resulted in significant climate benefits as mentioned above. With continuing growth in the demand for refrigeration and air-conditioning equipment particularly in developing countries, however, continuing dependence on HFCs could eventually pose significant burden to the climate in the long run.

The ozone and climate communities recognize the linkage between their efforts in protecting the ozone layer and the climate. Increasing efforts have been asserted in order to ensure synergy between the two associated global conventions. When the Parties of the Montreal Protocol decided in 2007 to accelerate the phase-out of HCFCs⁶, it was recognized that selection of alternative technologies for HCFCs should take into consideration climate impact and benefits. However, the accelerated phase-out of

² Velder and al. 2007. The Importance of the Montreal Protocol in Protecting Climate, Vol 104. PNAS,

¹ 2007 Consolidated Progress Report, Multilateral Fund Secretariat, July 2008.

³ Emissions of greenhouses regulated under the first commitment period of the Kyoto Protocol (2008-2012) are CO₂, CH₄, N₂O, HFCs, PFCs and SF₆.

⁴ Consumption of HCFCs grew at an average growth rate of more than 20% a year from 1995 – 2001. Consumption continues to grow at almost the same rate from 2002 – 2007.

⁵ IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Chapter 11

⁶ HCFCs are controlled by the Protocol since 1994 as "Annex C" substances. In 2007, The Parties of the Montreal Protocol negotiated an accelerated schedule of phase-out by ten years for all Parties for HCFCs. Developing countries have agreed to phase-out HCFCs by 2030.

HCFCs could result in an unintentional growth of HFC demand as it was the case for CFC phase-out; therefore, efforts should be made to ensure that more consideration be given to low GWP alternatives despite the fact that some alternatives will require higher investment capital⁷.

Under the current regulatory frameworks, neither the Montreal Protocol, nor the Kyoto Protocol is systematical covering the costs associated with a transition to low GWP technologies. The Kyoto Protocol is covering the mitigation of emissions, while the concern will be at the production and consumption levels. The Montreal Protocol has proven to be an effective instrument to deal with phasing out of ODS at the production and consumption levels; however, HFCs, which is primarily replacing ODS in the air-conditioning sector are regulated under the Kyoto Protocol, a protocol that has demonstrated, through the Clean Development Mechanism, the effectiveness of market instrument to leverage funding for technology transfer in developing countries⁸. Elements from both conventions can therefore be analyze and compared to preempt the increase in the demand of HFCs or high GWP gases.

OBJECTIVES

The objective of this study is to explore options for preempting an increase in the demand of HFCs or any other high global warming gases in the consumption sector as a result of HCFC phase-out in developing countries. The study will review and examine potential financing mechanisms available for financing the transition to low GWP alternatives, including a scheduled phase-down of HFCs in developing countries and transition economies. This study will focus on direct emissions of chemical; however, it recognized that actions to reduced indirect emissions indirect emissions, such as energy efficiency improvement, can have a significantly higher impact that focusing strictly on chemical used⁹. Therefore, the proposed study will also addressed technologies limitations and tradeoff between energy efficiency gains and low GWP gases in order to maximize overall energy benefits.

HCFCS PHASE-OUT SCHEDULE OF THE MONTREAL PROTOCOL

As per Article 7 data reporting requirements under the Montreal Protocol, the total consumption of HCFCs, mainly HCFC-141b, HCFC-142b, and HCFC-22, of all developing country Parties in 2006 is approximately 352,000 ODP? MT. Consumption of other HCFCs (for example, HCFC-123) represents only a small fraction in the HCFC consumption of most developing countries. It is expected that consumption of HCFCs would continue to grow if there were no Montreal Protocol obligations as demand for

⁷ Use of certain low alternative may result in higher capital due to toxicity and/or flammability of product and necessity to ensure that manufacturing facilities, production and servicing personnel are trained and equipped with necessary safety equipment.

⁸ The State and Trends of the Carbon Market 2008, World Bank, 2008 reported a cumulative committed investment to CDM projects activities over 2002-2007 of about US\$59 billion, for an average leverage ratio of 3.8.

⁹ I IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System Chapter 11.

refrigeration and air-conditioning, and better insulation, in developing countries is growing at a rapid pace. Based on the aggregate HCFCs consumption trends of developing countries in the previous years, a growth rate of 9 - 10% per annum could be expected. By applying a 9% growth rate to the demand of each type of HCFCs, the total demand of HCFCs in developing countries could reach up-to 2.78 million tons level in 2030. The breakdown of HCFC demand in 2030 is shown in Table 1.

HCFC/Year	2010	2015	2020	2025	2030
HCFC-141b	171,445	242,008	372,360	572,921	881,510
HCFC-142b	45,070	63,620	97,887	150,611	231,734
HCFC-22	324,594	458,191	704,983	1,084,704	1,668,951
Total	541,108	763,818	1,175,229	1,808,236	2,782,195

<u>Table 1. Demand of HCFCs (MT) Under Business-as-Usual Scenario</u> in Developing Countries

Actual demand of HCFCs is expected to be much lower than the business-as-usual scenario as the Montreal Protocol requires Article 5 countries to freeze their HCFC consumption by 2013 and followed by interim reduction steps leading to a complete phase-out by 2030, except a small quantity for meeting the servicing tail up to 2040.

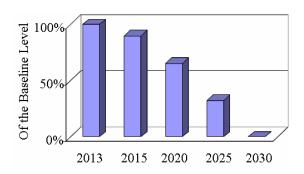


Fig. 1. HCFC Allowance Production and Consumption Schedule in Developing

Countries

With the accelerated HCFC phase-out schedule of the Montreal Protocol, a total HCFC consumption of 21 million MT could be avoided during the period $2013 - 2030^{10}$. This avoided consumption would result in early introduction of alternatives. Climate impacts or benefits are, therefore, dependent on the choices of alternatives to be adopted by Parties of the Montreal Protocol.

_

¹⁰ For illustration purposes, it is assumed that the same demand growth for the BAU scenario and the same reduction schedule are applied to each HCFC.

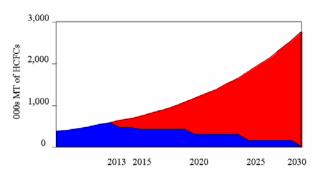


Fig. 2 Estimated consumption of HCFCs and alternatives for 2013 – 2030

If the avoided consumption (the red area in Fig. 2) is replaced by low GWP alternatives, the total climate benefits from the accelerated HCFC phase-out schedule (excluding impacts from improved or inferior energy efficiency performances) could be as high as 30.5 Gt of CO₂ equivalent by 2030¹¹. As early phase-out of HCFC-22 also results in avoided production of byproduct HFC-23, the accelerated HCFC phase-out schedule contributes therefore to additional indirect emission reductions of 5.6 Gt of CO₂ equivalent associated with avoided production of HFC-23¹².

NON-HCFC ALTERNATIVES

Major applications of HCFC-22, HCFC-141b, and HCFC-142b in developing countries are in the refrigeration, air-conditioning, and foam sectors. Alternatives to these HCFC applications include HFCs, which have high global warming potential values, and hydrocarbons (HC), CO₂ and ammonia, which have lower GWP values. Currently available non-HCFC alternatives for various applications are summarized in Appendix 1.

Selection of alternatives depends on the desired product quality and safety. For example, hydrocarbons, which are flammable, may not be desirable for certain applications. Certain alternatives may also compromise product quality (such as insulation performance of insulation foam products.

Properties offered by HFCs in the air conditioning and refrigeration sectors ... can we say something explaining why these gases are in fact not so easy to replaced (this is for non MP expert) such as Thermodynamic and properties or insulation values etc...

_

¹¹ Based on an assumption that HCFCs will be replaced by low GWP alternatives. ...

¹² Assuming 3% generation of byproduct HFC-23 in the HCFC-22 production, refer to HCFC Phase-out under the Montreal Protocol - Introductory Note on a Programmatic Approach, Montreal Protocol Operations, World Bank, 2008

CLIMATE IMPACT OF HCFC PHASE-OUT

The ozone depleting substances (HCFCs) are also high global warming gases, the phaseout of these chemicals presents an opportunity to maximize climate benefits, including energy efficiency gains and uses of low GWP alternatives. Alternatives currently available for replacing HCFCs consist of high global warming gases such as HFCs, low GWP gases such as hydrocarbons, CO2 and ammonia.

Selection of these substances would have to take into account a number of factors ranging from desired product qualities, flammability, toxicity, and associated costs of using such alternatives, including energy consumption and servicing aspects.

In terms of climate benefits, the selection of alternative gases, should not only focus on low GWP of alternatives, but should also cover energy efficiency benefits that could be gained over the lifetime of the equipment. This is particularly true for the foam products, air-conditioning and refrigeration equipment that are generally made with a small quantity of HCFCs, but are characterized by long product lifetime. Alternatives could be categorized according their energy efficiency potential and GWP of the products (refer to appendix 2).

ADDITIONALITY OF CLIMATE BENEFITS ASSOCIATED WITH ACCELERATED HCFC PHASEOUT

To meet the accelerated HCFC phase-out schedule stipulated by the Montreal Protocol, major policies and actions must be undertaken to minimize the current demand of HCFCs and future dependence on HFCs. Restricting manufacturing of new HCFC-based equipment is also another important measure to avoid the build-up of HCFC demand for servicing this equipment in the future. Restricting production of new HCFC-based equipment and products could be applied to existing manufacturers or manufacturing capacity by providing them with incentives for early conversion. Establishment of new manufacturing capacity based on HCFC technologies should also be prohibited.

Recovery, recycling and reuse of HCFCs, particularly HCFC-22 which represents more than 80% of the total consumption in most developing countries, would assist countries to meet their Montreal Protocol obligations. Since the Montreal Protocol defines consumption as production plus import and minus export, recycled HCFC-22 would replace the need for production and/or import of virgin HCFC-22 which in turn assists countries in meeting their consumption limit.

Replacement of HCFC-based equipment would also contribute to significant reduction in HCFC demand. Given that HCFC-based equipment or products (e.g., air-conditioning equipment, insulation foams, and etc.) have a long product life, early replacement of these items could be costly and not financially viable. Based on experience from CFC phase-out, early replacement of HCFC-based equipment or products could be viable when new products are more energy (and resource) efficient. As there have been a number of projects addressing this issue, this option will not be addressed in this proposed study.

As pointed out earlier, replacement of HCFCs in most applications could be done via both low and high GWP alternatives. In most cases, applications of low GWP technologies in the foam and refrigeration sectors could result in lower product costs. However, because of related toxicity and/or flammability issues of these low GWP alternatives, higher capital investments to ensure that manufacturing facilities, production and servicing personnel are trained and equipped with necessary safety equipment, making conversion costs prohibitive, particularly for small-and-medium scale enterprises.

The CFC phase-out experience clearly demonstrates that while cyclopentane is available as a foam blowing agent, all small-and-medium scale enterprises opt for HCFC-141b as initial investments are much lower. Hence, the preferred choice for phasing out of HCFC in the foam sector for small-and-medium scale enterprises could as well be HFCs, rather than cyclopentane. Common HFCs for foam blowing applications include HFC-134a, HFC-152a, HFC-245fa, HFC-365mc, and HFC-227ea. These chemicals have GWP many times higher than hydrocarbon alternatives (with GWP of less than 25) (Appendix 3).

Similarly, HCFC-22 refrigerant in the refrigeration and air-conditioning applications could be replaced by either low or high GWP refrigerants (i.e., hydrocarbons, ammonia, carbon dioxide, and HFCs). For developing countries in particular where the demand of residential air-conditioners is rapidly increasing, selection of appropriate alternatives to HCFC-22 refrigerant would render significant climate benefits. Currently, HFC-410A, which has a high GWP value, seems to be an alternative of choice. Extensive research and development has been put in place to improve energy efficiency of new HFC-410A residential air-conditioners. Providing that similar energy efficiency could be achieved by hydrocarbon technology, replacing HCFC-22 with hydrocarbon refrigerant could contribute additional benefits to the climate since GWP of hydrocarbon refrigerant are more than 100 times lower than HFC-410A. However, safety concerns on the flammability of hydrocarbons could prevent a large-scale adoption of this technology. Extensive training of production and servicing personnel may be required in order to employ this technology safely. More awareness for end-users is also equally important in order to educate consumers of the safe use of these products.

Recovery and recycling of HCFC-22 during servicing and maintenance of refrigeration and air-conditioning equipment is considered as an eligible activity for funding from the Multilateral Fund. Thus far, the Multilateral Fund has allocated significant resources to support establishment of recovery and recycling networks in almost all developing country Parties of the Montreal Protocol. In addition, training on better containment (reducing leak, recovery and recycling, and reuse) has also been one of the core activities funded by the Multilateral Fund.

Experience from CFC recovery and recycling, thus far, is not encouraging. Implementation of recovery and recycling practice is more desirable financially when servicing equipment with a large refrigerant charge size. For example, recovery and recycling of refrigerants in large industrial and commercial refrigeration systems and in large chillers are common. However, recovery and recycling of CFCs from mobile air-conditioning equipment and domestic refrigerators have not shown a similar success as

the price of CFCs and the quantity of CFCs that could be recovered from each unit are low.

It is expected that the economic of recovery and recycling HCFC-22 from residential air-conditioning units would probably be similar to recovery and recycling of CFCs from mobile air-conditioning equipment and domestic refrigerators. A combination of the low price of HCFC-22 and a small charge size of HCFC-22 in each piece of equipment, and high transaction costs to implement recovery and recycling HCFC-22, makes the recovery and recycling practice less financial attractive to most service technicians.

Potential climate benefits of recovery and recycling HCFC-22 warrants further consideration as it leads to a lower requirement for production of virgin HCFC-22. Excluding the direct GWP associated with HCFC-22, recovery and recycling of one MT of HCFC-22 reduces emission of 30 kg of byproduct HFC-23 from production of one MT of virgin HCFC-22 or about 420 MT of CO₂ equivalent. This significant climate benefits render opportunity to mobilize additional resources to lower high transaction costs of implementing the recovery and recycling practice experienced by service technicians.

PROPOSED STUDY

As indicated above, HCFC phase-out could result in an increased use of HFCs. In order to maximize benefits of both ozone layer protection and climate protection, a synchronized strategy for managing the use of HCFCs and phasing-down HFCs could assist Parties to the Montreal Protocol to develop a conducive environment for climate friendly technologies. This would also assist industries in developing countries to avoid two-steps conversion to low GWP technologies (from HCFC to HFC and to low GWP alternatives). To support market penetration of low GWP technologies (e.g., hydrocarbons, ammonia, carbon dioxide, and etc.), financial incentives within and outside the Multilateral Fund should be considered in order to offset higher costs, if any, of adoption of low GWP technologies. In addition, consumption and production of HFCs including those produced as byproducts of other chemical processes will also be considered.

Since all Parties to the Montreal Protocol are now in the process of developing their HCFC phase-out strategies, it is an opportune time for Parties to also consider their HFC strategy as part of their response to the call for more consideration of other environmental benefits, particularly the climate benefits, when phasing out HCFCs. Based on the business-as-usual scenario, it is obvious that the need for equipment or products (e.g., air-conditioning and insulation foam products) will continue to grow in spite of the HCFC phase-out schedule under the Montreal Protocol. Hence, to minimize the growth of HFCs the choice of technologies to be made by existing manufacturing facilities of those products currently produced with or containing HCFCs not only has to be considered, but also the choice of technologies for facilities to be established in the future in order to meet the demand of these products.

OBJECTIVES OF THE STUDY

While HCFC phase-out renders two climate benefit opportunities: (i) improved energy efficiency; and (ii) use of lower GWP chemicals, the proposed study will focus on resource mobilization to support the latter, but will addressed technologies limitations and tradeoff between energy efficiency gains and low GWP gases.

The study will focus on resource mobilization to support projects aiming at reducing use of HFCs¹³ as a result of HCFCs phase-out and reducing HFCs as a byproduct from HCFC production.

SCOPE OF THE STUDY

The study will investigate: (i)costs and barriers associated with conversion of HCFC technology with to low GWP alternatives; (ii) volume of HFCs and equivalent in carbon dioxide equivalent associated with the consumption and production, in developing countries including those produced as byproducts of other chemical processes; and (iii) potential funding resources (e.g., Multilateral Fund, UNFCCC, Tradable Carbon Market, Carbon Partnership Funds, Clean Technology Fund, and etc.) to support adoption of better HCFC containment practice, and climate friendly technologies (iv) recommendation for a funding methodologies such as approaches to evaluate and setting baseline consumption and production of HFCs and scheduled phase-down, etc. In addition, the study will investigate effective modalities for implementing these activities in order to ensure seamless synergy between the MLF funded activities and activities funded by resources outside the MLF.

Based on experience from CFC phase-out, it is anticipated that HCFC phase-out will involve a large number of beneficiaries. Moreover, HCFC phase-out strategies and HFC strategies may require not only investment and technical assistance activities but also a combination of policy and investment interventions, supporting by timely availability of funding sources, to ensure cost-effective means of achieving the targets. Experiences from implementation of CFC phase-out activities in the last two decades clearly demonstrate effectiveness of sectoral or national approaches whereby policy and investment activities are carried out in chronology. Similarly, the climate community also recognizes the need to scale up its CDM activities. Recently, a program of activity approach has been adopted by the CDM Board.

There are some similarities between the sectoral or national approaches under the Multilateral Fund and the CDM program of activity approach. The study will review these different approaches and offer recommendations to synchronize implementation modalities as well as to synchronize, to the extent possible, monitoring and verification procedures that may be required by the MLF mechanism, CDM mechanism, and other potential funding mechanisms.

¹³ It includes HFCs used as a result of CFC and possibly HCFC phase-out. For example, the study will explore financing opportunities for replacing HFC-134a MACs with low GWP alternatives.

STUDY APPROACH

The study will entail a desk review of the on-going study on HCFC alternatives and their climate benefits being conducted by UNEP TEAP under the auspices of the Montreal Protocol, the cost study being carried out by the Multilateral Fund, all applicable CDM methodologies, proposed approaches under the climate convention negotiations, funding mechanisms outside UNFCCC and MP such as the Clean Technology Carbon Partnership Funds, Clean Technology Fund and others. Findings of the desk review will lead to development of funding recommendations and/or methodologies for potential funding sources. The study will also include workshops to inform developing countries of findings of the study, which will lead to identification of potential pilot projects in a few developing countries.

TIMEFRAME

Detailed terms of reference for this study will be submitted for the consideration of the Executive Committee at its 58^{th} Meeting in July 2009. The study will then take about 12 months to complete. The final report of the study will be submitted to the ExCom at its 62^{nd} Meeting in November 2010.

Appendix 1: Non-HCFC Alternative Matrix

Sector	Sub-sector	HCFCs Currently Used	Alternative Options
Foam	XPS	HCFC 22/HCFC 142b (blends), HCFC 22, HCFC 142b	CO ₂ , CO ₂ /Ethanol, CO ₂ /HCs; HFC 134a
	Polyurethane Spray	HCFC 141b, minor use of HCFC 141b/HCFC 22	HFC, CO ₂ (CO ₂ not preferred option if superior thermal insulation performance is required.)
	Domestic refrigerators/freezers	HCFC 141b, minor use of HCFC 141b/HCFC 22	HFC, HC (Small enterprises use HFCs)
	Commercial refrigerators/freezers	HCFC 141b	HFC, HC, CO_2 (Adhesion problem with CO_2)
	Sandwitch panels - continuous	HCFC 141b	нгс, нс
	Sandwitch panels - discontinuous	HCFC 141b	нгс, нс
	Insulated pipes	HCFC 141b	HFC, HC
	Integral skin foams	HCFC 141b	HFC 134a, CO ₂ , HC
	Supermarket		R-404A, CO ₂ , HCs and
Refrigeration	refrigerators	HCFC 22	Ammonia (R-717)
	Industrial refrigeration	HCFC 22	R-717, CO ₂
	Transport		HFC 134a, R-404A, R-
	refrigeration	HCFC 22	410A
Air-conditioning	Air-conditioning	HCFC 22	R-410A, HCs, CO ₂
	Water -heating heat		
	pumps	HCFC 22	HFC 134a, R-410A, CO ₂
	Chillers	HCFC 22	HFC 134a

Source: OORG Presentations, OORG Meeting, October 2008, Washington DC

Note: R-404A and R-410A are HFC blends.

Appendix 2: Selection of HCFC's Alternatives and Climate Considerations

In terms of climate benefits, it could be described that the available alternatives in the consumption sector can be categorized according to Figure 3. These four regions represent:

- Region I Low GWP alternatives with improved energy efficiency and/or thermal insulation property of the final products;
- Region II High GWP alternatives with improved energy efficiency and/or thermal insulation property of the final products;
- Region III Low GWP alternatives with inferior energy efficiency and/or thermal insulation property of the final products when compared with HCFC products;
- Region IV High GWP alternatives with inferior energy efficiency and/or thermal insulation property of the final products when compared with HCFC products.

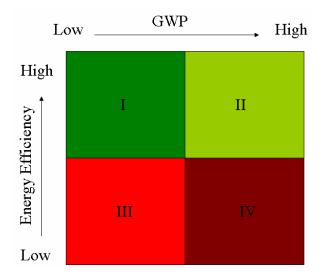


Fig. 3 Characteristics of Non-HCFC Alternatives

Foam products, air-conditioning and refrigeration equipment, are made with a small quantity of HCFCs. However, they have a long product lifetime. Therefore, any alternatives of HCFCs that fall in Regions III and IV are not desirable. For example, replacing HCFCs with low GWP alternatives (Region III) but resulting in low energy efficiency or insulation property, could result in higher energy consumption during the lifetime of these products. Emissions of carbon dioxide during the lifetime of the products normally are many times higher than the difference between the GWP values of HCFCs and alternatives used for manufacturing or maintaining these products. Alternatives in Region IV are even less desirable.

Appendix 3: GWP of HCFCs and HFC alternatives¹⁴

Substance	GWP
HCFC-22	1,700
HCFC-141b	630
HCFC-142b	2,000
HFC-134a	1,300
HFC-152a	140
HFC-245fa	820
HFC-365mc	840
HFC-227ea	2,900
HFC-23	14800
R-410A (HFC Blends)	2,100
R-404A (HFC Blends)	3,900
R-407C (HFC Blends)	1,800

Note: R-404A, R-407C, and R-410A are HFC blends

^{14 2006} UNEP Technical Options Committee Refrigeration, A/C and Heat Pump Assessment Report

Appendix 4: Preparation Cost Breakdown

Review of current HCFC applications and available non- HCFC alternatives; market analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy performance (taking into account ongoing work of TEAP and OORG) Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Improved Energy and Resource Review of current HCFC applications and available non- HCFC alternatives; market analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy performance (taking into account ongoing work of TEAP and OORG) 35,000	Element	Description	US\$
HCFC alternatives; market analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy performance (taking into account ongoing Reduction work of TEAP and OORG) Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with HCFC alternatives; market analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy performance (taking into account ongoing work of TEAP and OORG) 35,000		Review of current HCFC	
analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy performance (taking into account ongoing work of TEAP and OORG) Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with analysis on penetration of various alternatives (high and low GWP) and estimates on benefits from improved energy performance (taking into account ongoing work of TEAP and OORG) 35,000		applications and available non-	
alternatives (high and low GWP) and estimates on benefits from improved energy performance (taking into account ongoing Reduction work of TEAP and OORG) Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with alternatives (high and low GWP) and estimates on benefits from improved energy performance (taking into account ongoing work of TEAP and OORG) 35,000		HCFC alternatives; market	
Potential Volume of Carbon Dioxide Equivalent Emission Reduction Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with and estimates on benefits from improved energy performance (taking into account ongoing work of TEAP and OORG) 35,000 Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major		analysis on penetration of various	
Potential Volume of Carbon Dioxide Equivalent Emission Reduction Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with improved energy performance (taking into account ongoing work of TEAP and OORG) 35,000 Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major		alternatives (high and low GWP)	
Dioxide Equivalent Emission Reduction Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with (taking into account ongoing work of TEAP and OORG) 35,000 Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major		and estimates on benefits from	
Reduction work of TEAP and OORG) 35,000 Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Article 2 countries that are major	tial Volume of Carbon	improved energy performance	
Barriers Associated with Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major	de Equivalent Emission	(taking into account ongoing	
Conversion of HCFC Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major	ction	work of TEAP and OORG)	35,000
Technology with Baseline Energy and Resource Efficiency to Low GWP Alternatives with Industrial survey in a selected number of Article 5 countries and Article 2 countries that are major	ers Associated with		
Energy and Resource Efficiency to Low GWP Alternatives with number of Article 5 countries and Article 2 countries that are major	ersion of HCFC		
to Low GWP Alternatives with Article 2 countries that are major	nology with Baseline	Industrial survey in a selected	
	gy and Resource Efficiency	number of Article 5 countries and	
Improved Energy and Resource technology providers for each	w GWP Alternatives with	Article 2 countries that are major	
	oved Energy and Resource	technology providers for each	
Efficiency HCFC application 50,000	ency	HCFC application	50,000
Industrial survey focusing on		Industrial survey focusing on	
chemical producers in both		chemical producers in both	
Article 5 and non-Article 5		Article 5 and non-Article 5	
Consumption and Production of countries; market analysis to	umption and Production of	countries; market analysis to	
HCFCs project trends 10,000	Cs	project trends	10,000
Review of existing activities or		Review of existing activities or	
projects funded by various		projects funded by various	
funding mechanisms; review		funding mechanisms; review	
existing CDM and non-CDM		existing CDM and non-CDM	
methodologies; interview with		methodologies; interview with	
prospective beneficiaries in		prospective beneficiaries in	
Article 5 countries; identification		Article 5 countries; identification	
of potential sources of financing;		of potential sources of financing;	
development of approaches and			
project model for securing such		project model for securing such	
Potential Funding Resources resources 55,000	tial Funding Resources	resources	55,000
Development of Funding Development of tools for	lopment of Funding	Development of tools for	
Criteria/Standards/Methodologie capturing co-financing resources	_	*	
		1 6	70,000
Stakeholder Consultation	holder Consultation		,
Meetings 3 consultation meetings 30,000	norder Combunation		
Total 250,000	ings	3 consultation meetings	30.000

Annex II Description of Proposed Pilot ODS Disposal Projects

- 1. Three pilot ODS disposal projects are proposed in the 2009 World Bank Business Plan and its associated Work Program for the consideration of the 57th Meeting of the Executive Committee. These pilot projects are being proposed for Indonesia, the Philippines, and Mexico.
- 2. The three pilot ODS disposal projects will be designed to capture different circumstances of unwanted ODS (i.e., sources of unwanted ODS, collection, transportation, packaging, storage, and final disposal) in these three countries. The proposed activity for Mexico will demonstrate the employment of ODS disposal methodologies and criteria developed by the ODS disposal study to unwanted ODS to be collected from refrigerators and air-conditioners under the Mexico energy efficiency appliances program being developed by the World Bank. Both CFC-12 and CFC-11 from the old units will be collected and disposed of.
- 3. For Indonesia, the project will address disposal of ODS from illegal imports. This project will explore feasibility of having ODS eliminated by the local disposal facility. The design of this project will be built on experience of the earlier ODS disposal project financed by the Government of Japan as part of its bilateral contribution to the Multilateral Fund.
- 4. For the Philippines, the project will address not only disposal of bulk CFCs but also contaminated CFCs (mix of CFC-12, HFC-134a and others). For the Philippines, the project will address transportation of CFCs from service shops to the recovery and recycling center financed by the NCPP, packaging, and final disposal.
- 5. The three pilot projects will also include a financial analysis to determine financial viability of ODS disposal for different streams and for different local conditions. Actual costs of carrying out of ODS disposal are expected to be covered by carbon credits generated by ODS disposal. Disposal of ODS will be carried out at existing disposal facilities that meet the destruction efficiency of at least 99.99%.
- 6. Expected amounts of ODS to be disposed of are included in the 2009 World Bank Business Plan. For easy reference, those figures are summarized below.

Country			ODP tons		
Country	2009	2010	2011	2012 - 2015	Total
Indonesia		60			60
Philippines		12			12
Mexico		100	135	540	775

Note: The quantity of ODP tons for Mexico is made on the assumption that 1.2 million refrigerators and a/c will be exchanged under the energy efficiency appliance program.