

United Nations Environment Programme

Distr. GENERAL

UNEP/OzL.Pro/ExCom/55/47 19 June 2008

ORIGINAL: ENGLISH

EXECUTIVE COMMITTEE OF THE MULTILATERAL FUND FOR THE IMPLEMENTATION OF THE MONTREAL PROTOCOL Fifty-fifth Meeting Bangkok, 14-18 July 2008

REVISED ANALYSIS OF RELEVANT COST CONSIDERATIONS SURROUNDING THE FINANCING OF HCFC PHASE-OUT (DECISIONS 53/37(I) AND 54/40)

Pre-session documents of the Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol are without prejudice to any decision that the Executive Committee might take following issuance of the document.

For reasons of economy, this document is printed in a limited number. Delegates are kindly requested to bring their copies to the meeting and not to request additional copies.

EXECUTIVE SUMMARY

Overview of HCFCs and HCFC funding issues

1. As of April 2008, the Multilateral Fund has approved projects and activities, which when fully implemented are expected to phase-out some 250,000 ODP tonnes of consumption of ODSs. While, in comparison to this, the 25,765 ODP tonnes of Article 5 HCFC consumption appears modest, this ODP consumption translates into almost 363,400 metric tonnes, making the HCFC phase-out to be addressed seem larger than that achieved by the Fund to date.

Currently, three chemicals, HCFC-141b, HCFC-142b and HCFC-22 account for more 2. than 99 per cent of the total consumption of all HCFCs in Article 5 countries. These HCFCs are used mainly in the manufacturing of foam products and refrigeration equipment and in the refrigeration servicing sub-sector. The remaining consumption of HCFCs is used in specialized applications in the aerosol, fire extinguisher and solvent sectors. While there is not yet sufficient data to ascertain precise numbers, it is clear that about 90 countries consume only HCFC 22 for servicing existing refrigeration and air conditioning equipment, while 50 or so Article 5 countries have, in addition, enterprises that use HCFCs in manufacturing. Therefore, the refrigeration servicing sector will play an important role in complying with the 2013 freeze and 2015 reduction, particularly in those 90 or more countries without HCFC-based manufacturing enterprises. Given the experience of the Fund to date, it is likely that those countries that use HCFCs solely for servicing will be able to effectuate a phase-out through the use of an HPMP and related activities such as technician training, recovery and recycling, and conversion incentive programmes, while those countries which use HCFCs in the manufacturing sector will have to augment HPMP activities with sectoral or national investment components.

Existing policies for phasing out HCFCs

3. In line with decision 53/37(i), viable substitute technologies for phasing out HCFCs have been identified in the foam and refrigeration sectors, and their corresponding indicative ranges of costs have been estimated. Specifically, the incremental capital cost (ICC) of converting manufacturing firms to alternatives, and the incremental operational costs (IOC) associated with funding the new alternative have been estimated. That said, the cost ranges currently available do not at this stage provide a basis for recommending project conversion templates or establishing funding thresholds for certain types of conversions, but rather demonstrate the relative levels of capital costs and operational costs associated with conversions so as to better inform the ongoing discussion of the Executive Committee. On the basis of this understanding, the Fund Secretariat believes there is an adequate basis for the preparation, review, consideration and approval of initial stand-alone HCFC conversion projects in line with decision 54/39 (d)¹. However, in regard to sectoral or national HCFC phase-out plans, the Secretariat is not confident that it has the ability to provide informed recommendations to the Executive Committee on the appropriate cost of such plans. Instead, the Secretariat believes that it may be necessary to first develop a cost framework for HCFC phase-out projects on the basis of experience gained

¹ For countries that chose to implement investment projects in advance of completion of the HPMP: (i) the approval of each project should result in a phase-out of HCFCs to count against the consumption identified in the HPMP and no such projects could be approved after 2010 unless they were part of the HPMP; and (ii) if the individual project approach was used, the submission of the first project should provide an indication of how the demonstration projects related to the HPMP and an indication of when the HPMP would be submitted.

through review of a limited number of stand-alone HCFC conversion projects as well as HCFC phase-out management plan (HPMPs) to be prepared by Article 5 countries².

4 As noted above, funding of Multilateral Fund projects has been based on the assessment of eligible ICC and IOC. The ICC has been determined on the basis of the cost of equipment necessary to effectuate the conversion. In contrast, the IOC, which, in concept, has paid for the difference between the cost of the use of, for example, CFCs and the HFCs that have replaced them, has been paid for a duration determined by the Executive Committee. That duration has varied between sectors, and has ranged between 0 to 4 years. In some cases, such as in the aerosol sector, where the cost of the alternative is lower than that of the chemical it is replacing, the lower IOC has resulted in a reduction of the funds available to cover the capital cost of the conversion, making conversions more difficult. As it relates to HCFCs, at the present time and with the current stage of commercialisation of new technologies in Article 5 countries, there is a high degree of uncertainty regarding the precise quantification of the cost parameters that comprise IOC in HCFC phase-out projects. However, if the current policies and criteria for funding ODS phase-out remain unchanged, the IOC in HCFC phase-out projects could, depending on the alternative selected take a larger share of total project costs than was typical for similar CFC phase-out projects. The IOC, which are paid in cash, have provided an incentive to firms to undertake early conversion during the CFC phase-out. However, and given the higher cost of alternatives such as HFC-245fa, and the lower cost of zero global warming potential (GWP³) alternatives such as hydrocarbons, it appears that the current IOC system could result in a perverse incentive for firms to request conversion to higher priced but higher GWP alternatives, a result that would not appear consistent with the spirit or terms of decision XIX/6 of the Meeting of the Parties. Accordingly, this issue is ripe for in depth consideration by the Executive Committee, and it might be appropriate for some initial stand alone projects to be submitted with the relevant information needed to assess the IOC, which would enable the Committee to consider the issue on the basis of more accurate data.

5. Pending determination of the eligibility of funding for replacement of HCFC-based equipment that had been installed with assistance from the Multilateral Fund (second conversions) it would not be possible for stand alone projects for HCFC phase-out in enterprises that employed such equipment to be submitted. Resolution by the Executive Committee by its 57th Meeting in early 2009 of issues concerning second conversions and installation cut-off date for equipment to be funded for replacing HCFCs would be essential to permit consideration of stand-alone conversion projects to proceed without significant delay.

Foam sector technologies and costs

6. As noted above, approximately 50 Article 5 countries use HCFCs for manufacturing. In that context, the largest use area is the use of HCFC-141b in the production of foams. Luckily, there are a wide variety of alternatives available to replace the use of HCFCs in the foam sector. In this sector, water-based chemicals and hydrocarbon blowing agents have already been proven and are widely applied in Article 5 countries as non-HCFC alternatives to CFCs and will

 $^{^2}$ Funding for the preparation of HPMPs in more than 115 Article 5 countries has been submitted for consideration by the Executive Committee at its 55th Meeting.

³ GWP is a measure of how much a given mass of greenhouse gas is estimated to contribute to global warming. It is a relative scale which compares the gas in question to that of the same mass of carbon dioxide whose GWP is by definition equal to 1.

continue to be also applied as alternatives to the use of HCFC-141b. The safety requirements associated with hydrocarbons provide operational challenges for very small enterprises; however similar challenges have been overcome for hydrocarbon technology in the aerosol sector. Newer HFC-based technologies are also available and in regular use in non-Article 5 countries. These, however, are yet to be introduced commercially in Article 5 countries. The HFC options have a higher GWP than the HCFCs they replace. Another option, methyl formate technology, has a low GWP, and may meet the needs of Article 5 country enterprises in the production of integral skin foam sub-sector and in some applications in the rigid foam sub-sector, and at lower costs. However, methyl formate cannot yet be considered a mature technology for some applications. The alternatives just described represent all the technology choices that will be available to Article 5 Parties to address the 2013 and 2015 control targets.

7. The document provides a preliminary estimate of the ICC and IOC of conversion from the use of HCFCs in foam enterprises. The magnitude of ICC in the foam sector will be dependent mainly on the choice of technology. On the positive side, ICC will be modest for enterprises that installed new equipment to convert from CFC-11 to HCFC-141b, either on their own or with Multilateral Fund resources. Similarly, water-based technology can, in general, be implemented using HCFC-based process equipment. Related costs needed by these enterprises to effectuate the conversion from HCFCs would mainly consist of technical assistance for training and the trial of new chemical formulations. It is thought that related costs would need to be set at a higher level of funding than in the transition from CFCs to HCFCs. Costs related to conversion of HCFC–based enterprises to hydrocarbon technology relate to the provision of new processing and safety equipment at a similar cost to the equipment supplied for the hydrocarbon technologies used for CFC phase-out. However, as in the CFC phase-out, the capability of small enterprises to absorb the hydrocarbon-based technology is likely to be limited.

8. Although the ICC for conversion in the foam sector appear modest, the IOC will be significant, in particular, for HFC-based solutions, mainly due to the higher cost of the replacement chemicals. If IOC were paid for similar transitional periods to those that had been used in the foam sector for conversion from CFCs, the total funding level for future projects using HFC technologies would be dominated by these costs, that is, the cost paid for operational cost would be much higher than the capital cost of converting the firm to enable the use of HFCs. For hydrocarbon technology, while the precise levels of IOC cannot be fully quantified prior to the review and evaluation of actual projects, the application of current rules and policies would be expected to yield some savings. However, information from one Article 5 country indicates that in some production circumstances, conversions to HCs could be associated with some operational costs.

9. While the above discussion has focused on a more project specific view, experience with CFC phase-out in the foam sector has demonstrated the important role played by the chemicals suppliers and systems houses⁴ in tailoring the chemical systems⁵ used to manufacture foam to meet the needs of local markets and conditions (climatic and otherwise). These intermediaries, which are well known to many foam manufacturers, are capable of formulating foams systems to

⁴ Systems houses are chemical companies that are engaged in the business of bulk pre-blending of foam systems for distribution and sale to foam manufacturers. The pre-blending obviates the need for investment in expensive inhouse premixing stations and bulk purchase of several chemical components that are blended in the system.

⁵ Foam chemical systems are mixtures of chemical ingredients specially formulated and blended to meet specific foam processing conditions and product quality.

meet the specific needs of end users. In that light, it is believed that commercialisation and penetration in Article 5 countries of both HFC and low-GWP technologies (i.e., hydrocarbons, methyl formate), would be assisted through the forward funding and implementation of projects that target the optimization and validation for Article 5 conditions of foam chemical systems to minimise production costs. Such projects would be directed towards supporting the work of systems houses to facilitate the supply of new, non-HCFC chemical systems to foam producing enterprises.

Refrigeration sector technologies and costs

10. Use of HCFCs in the refrigeration sector is dominated by the use of HCFC 22. In the refrigeration sector the situation regarding replacement of HCFC-22 used in manufacturing has some similarities to the foam sector. Both HFC and hydrocarbon replacements are available to Article 5 countries. While in broad terms each technology has already been used in Multilateral Fund projects, the specific applications and sub-sectors differed significantly.

11. In this context, the possible adoption of low GWP technologies in Article 5 countries, in particular in the refrigeration and air conditioning sub-sectors, is of high priority. The Executive Committee might wish to consider whether to call for some demonstration projects in this sector. This would aim at demonstrating the specific steps and evaluating specific costs associated with the conversion to low GWP technologies.

12. Most HFC alternatives currently available for use in the refrigeration sector have a higher direct GWP than the HCFCs they would replace. On the other hand, the use of low GWP substances, in particular hydrocarbons, involves safety issues. Safety can be readily addressed but results in incremental capital costs similar to those arising in the foam sector, with the added challenge of ensuring safety in servicing activities. HFC and HC technologies represent all the technology choices that are likely to be available to enable Article 5 Parties to address the 2013 and 2015 control targets. It remains unclear if, when, and for what applications low GWP refrigerants with no flammability and low toxicity will become available at a later time. The document provides a preliminary estimate for incremental capital costs and incremental operational costs for the conversion of enterprises using HCFCs in refrigeration manufacturing.

13. With regard to the refrigeration servicing sub-sector, noting the limited information currently available about HCFC use in many Article 5 countries, preliminary estimates of phase-out costs to meet the 2013 and 2015 control measures have been based on Multilateral Fund experience with the range of individual activities funded to achieve CFC phase-out in refrigeration servicing.

14. It is likely that HCFC-22 is used by the service sector of essentially every Article 5 country and that a large number of Article 5 countries will have HCFC consumption almost exclusively in the service sector. In contrast to the situation for CFC phase-out, when in many countries at least some manufacturing was CFC based and could be addressed to support the country in fulfilling its phase-out obligations, in the case of HCFCs there might be no such option for the majority of Article 5 countries. CFC phase-out under the Multilateral Fund has mainly relied on supply restrictions through licensing and quota systems, while at the same time enabling the service sector to cope with dwindling CFC supplies through provision of funding for training in good practices and the provision of tools and equipment. The new challenge for

HCFC phase-out is that supply side management has to start much earlier in the phase-out schedule, and to continue over a longer time-frame.

15. In examining the servicing sector the Secretariat notes that the current and future demand for HCFC-22 for servicing is proportional to the size of the installed base of HCFC-22 airconditioning equipment in the consuming country. The amount of installed equipment is being constantly enlarged through imports of HCFC-22-based refrigeration equipment. Accordingly, in order to expedite the achievement of future reductions of consumption in the refrigeration servicing sector of Article 5 countries, and to provide a stronger incentive for air conditioner manufacturers to convert from the use of HCFCs, the possibility of introducing early national control schedules on imports of HCFC-22 equipment might be considered. This might influence the demand for Multilateral Fund conversions of HCFC-22 air conditioner manufacturing facilities.

Environmental issues

16. Consistent with decision XIX/6, the Secretariat has examined options on how the Executive Committee could give priority to cost-effective projects and programmes for HCFC phase-out, which minimise other impacts on the environment, particularly with respect to climate, including both GWP and energy use. As a starting point, the Secretariat has explored three basic methodologies, namely, a methodology based solely on GWP; a methodology based in Life Cycle Climate Performance (LCCP) and a methodology based on a 'functional unit' approach to life cycle evaluation.

17. In its initial review, the Secretariat did not consider that a methodology based solely on GWP would wholly address the mandate of decision XIX/6, since it would be unable to account for 'energy use' as required within the decision. The development of a formal LCCP is data-intensive and requires the input of a substantial number of variables, not all of which might be known, either to the enterprise or a country, at the time of the funding application. With the GWP and LCCP approaches representing the two extremes of the spectrum, the Secretariat has been assessing intermediate options which might overcome the disadvantages of each. This has resulted in the initial evaluation of a 'functional unit'⁶ approach which offers the robustness of a simplified and less data-intensive methodology, while ensuring that the key criteria outlined in decision XIX/6 can be taken into account. The primary output of this methodology would be a comparative assessment of lifecycle climate impacts taking into consideration the GWP of the substitute, the amount of substance used, the energy consumed in operation, and the emission functions through the life-cycle.

18. This approach needs further development and evaluation across a wider range of sectors to provide assurance that the basic methodology can be applied more widely. With this in mind, the Secretariat is seeking the views of the Executive Committee as to whether it wishes the Secretariat to continue further developing this methodology in order to report in a more detailed fashion at a subsequent Executive Committee meeting.

⁶ The 'functional unit' approach focuses on a typical use of the substance in a sector, called 'element', in order to characterise the impacts related to that 'element' throughout its lifecycle. The purpose is not to calculate the precise climate impact for each and every application, but to characterise these impacts so they can be used for comparing technologies.

Co-financing

19. The Multilateral Fund experience to date, principally in the chiller sector, suggests that significant time is needed to prepare, approve and implement projects co-funded by different entities. Given the time based reduction commitments of the Montreal Protocol, it is difficult for countries to risk having their projects delayed for the uncertain prospect of co- funding. Accordingly, if the slow rate of support by other funding entities were to continue, it would call into question the possibility of using other institutions to support Multilateral Fund activities. In order to reduce this obstacle, it would be possible for the Fund Secretariat to approach other institutions to see if clear methodologies and more streamlined mechanisms can be developed to enable the other institutions to top up Multilateral Fund ozone funding in order to achieve additional climate benefits. Exchange with other institutions could commence once discussion in the Executive Committee has progressed regarding certain issues raised in this document, in particular relating to cut-off date, second conversion and how to minimise other impacts on the environment.

20. In any event, through the preparation of HPMPs, countries and bilateral and implementing agencies have been encouraged to explore potential financial incentives and opportunities for additional resources to maximize the environmental benefits pursuant to paragraph 11(b) of decision XIX/6. Accordingly, the objectives of co-financing and a preliminary framework for such projects as might be applied to HCFC projects that could facilitate cooperation with possible co-financing entities, could be considered at a future meeting. It would be important for a preliminary framework to encompass guidance for projects where the additional benefits created through support by the Fund might, either now or in the future have a certain value, for example by being eligible for carbon financing.

I. INTRODUCTION

1. This preliminary discussion document that contains an analysis on several relevant cost considerations surrounding the financing of HCFC phase-out is presented in response to the Executive Committee's decision 53/37(i).

I.1 Executive Committee's mandate

2. At its 53rd Meeting in November 2007, the Executive Committee considered a paper prepared by the Fund Secretariat on options for assessing and defining eligible incremental costs for HCFC consumption and production phase-out activities.⁷

3. The Executive Committee concluded by requesting, *inter alia*, "that the Secretariat, in consultation with technical experts with knowledge of experiences in Article 5 countries with different levels of development and non-Article 5 countries, would prepare by 25 March 2008 a preliminary discussion document providing analysis on all relevant cost considerations surrounding the financing of HCFC phase-out, taking into account the views expressed by Executive Committee Members in the submissions referred to in paragraph (1), and including:

- (a) Information on the cost benchmarks/ranges and applicability of HCFC substitute technologies; and
- (b) Consideration of substitute technologies, financial incentives and opportunities for co-financing which could be relevant for ensuring that the HCFC phase-out resulted in benefits in accordance with paragraph 11(b) of decision XIX/6 of the Nineteenth Meeting of the Parties" (decision 53/37(i)).⁸

4. The Secretariat introduced the paper requested under decision 53/37(i) to the Executive Committee at its 54th Meeting. In the ensuing discussion, several issues were raised by the Committee, inter alia, the need to act immediately on HCFC phase-out, and to ensure that it would result in benefits in accordance with paragraph 11(b) of decision XIX/6; the calculation of IOC as a major component of the overall cost of phase-out projects; the cut-off date for newly established manufacturing enterprises; and the eligibility of second conversions. Mention was also made of the need to minimize the environmental impact of HCFC phase-out activities and to consider using other environmental indicators in addition to ODP, to take account of the cost implications of phase-out for LVC countries, and to ensure that HCFC phase out was integrated as much as possible with CFC phase-out. Several views were expressed in regard to co-financing issues, namely, that seeking co-financing possibilities probably should be an option; the need to gather information concerning sources of funding that were additional to the Global Environment Facility (GEF), whose timelines were considered by some to be too long; that co-financing should bring additionality, and that the main source of funding should remain the Fund itself.

5. After hearing a statement from the facilitator of the contact group that was established by the Executive Committee to consider the guidelines for the preparation of HPMPs and relevant cost considerations surrounding the financing of HCFC phase-out, the Committee decided to

⁷ UNEP/OzL.Pro/ExCom/53/60.

⁸ Executive Committee Members were invited to submit their views on elements to be considered in the guidelines for the preparation of HCFC phase-out management plans, cost considerations to be taken into account by the Secretariat, cut-off date for funding eligibility, and second-stage conversions to the Secretariat by 15 January 2008.

consider at its 55th Meeting a revised version of document UNEP/OzL.Pro/ExCom/54/54 which would take into account any comments that Members had submitted to the Fund Secretariat by the end of April 2008 (decision 54/40).

I.2 Scope of the paper

6. Decision 53/37(i) provides that the existing policies and guidelines of the Multilateral Fund would be applicable to the funding of HCFC phase-out unless otherwise decided. Accordingly, the following underlying principles were used for the analysis:

- (a) Assumptions in this paper regarding the extension of existing policies are without prejudice to any future policy discussion of the Executive Committee on funding guidelines;
- (b) Analysis of eligibility issues, such as the question of whether to fund a second conversion (i.e., replacement of HCFC-based equipment that had been installed with assistance from the Multilateral Fund) or funding of manufacturing capacity established after a certain cut-off date, is not considered part of the mandate of this paper. Based on decision at the 54th Meeting (decision 54/5 (iii)) funding for preparation of HCFC phase-out projects could not be considered for approval until the 56th Meeting and the consequent projects are unlikely to be submitted in advance of the 58th Meeting. Resolution of the policy for establishing a cut-off date for equipment installation by the 57th Meeting in early 2009, should the Executive Committee wish to do so, would permit stand-alone phase-out projects to be considered with little if any delay; and
- (c) Preparation of this paper has been undertaken without prejudice to decision XIX/10 of the Meeting of the Parties regarding terms of reference for the study on the 2009–2011 replenishment of the Multilateral Fund for the Implementation of the Montreal Protocol and without prejudice to the preparation of that study.
- 7. The paper covers the following main content:
 - (a) A summary of policies for funding HCFC phase-out, and an overview of HCFCs uses in Article 5 countries. This is supported by Annex I, Relevant policies and decisions adopted by the Parties to the Montreal Protocol and the Executive Committee regarding phase-out of HCFCs, and Annex II, Overview of HCFC consumption in Article 5 countries;
 - (b) An analysis of the incremental costs for phasing out HCFC consumption in the foam sector, supported by Annex III containing a detailed analysis on technical and costs issues related to the foam sector. The cost analysis benefited from the experience gained in the Multilateral Fund after reviewing over 1,000 investment projects for phasing out CFCs used as blowing agents. Representative samples of projects were selected from the Secretariat's inventory of approved projects

database⁹ for review with a view to identifying the nature, the extent of application and the main characteristics of various alternative technologies to CFC-11 and their applicability to conversions from HCFCs to a final technology. The ICC and IOC of the selected samples of projects were also reviewed against the background of information provided in project completion reports since some of them could be also applied to the phase-out of HCFCs¹⁰. The prices of equipment and chemicals were examined to determine whether significant differences existed between those at the time of project approval and at the time the project completion report was submitted three to four years later. Price and other relevant project information was extracted from project completion reports submitted between late 1998 and mid 2006. Prices of chemicals were compared with those provided by a selected number of Ozone Units in their progress reports on the implementation of the country programmes as well as by manufacturers of alternative blowing agents. The information obtained from the analysis was used as a starting point for estimating the possible incremental costs for phasing out HCFCs. In order to provide the necessary background information, including prices of conversion technologies which are currently mature in non-Article 5 countries, published information was reviewed and experts with knowledge of these technologies were consulted. The total information obtained provided the basis for estimating indicative incremental capital and operating cost ranges;

- An analysis of incremental costs for phasing out HCFC consumption in the (c) refrigeration sector, supported by Annex IV containing a detailed analysis on technical and costs issues related to the refrigeration sector, including the service sector. The cost analysis could not be based on existing experience to the same degree as in the foam sector. While Multilateral Fund experience in conversion of mass production of refrigeration equipment is available, HCFC-based equipment is manufactured for different market segments, and has different sizes and is produced in different quantities than previous projects. In addition, there is no experience with most of the non-ODS refrigerants, which are likely alternatives to HCFC-22. Since existing experience relating to project cost could not be translated directly, the Secretariat used information in the HCFC studies already presented, in particular that on HCFCs in China. The experience in project assessment was transferred to the new sectors, input collected from experts and production equipment manufacturers, and used the approach of defining model companies to define the related conversion cost. A different analysis is presented for the service sub-sector, which is based on the extensive Multilateral Fund experience that started in 1991. Special consideration has been given to refrigerant management plans (RMPs) approved under decision 31/48 and to terminal phase-out management plans (TPMPs) approved under decision 45/54;
- (d) Environmental issues, in particular the necessary steps to operationalize

⁹ The inventory of approved projects is the Secretariat's main database on projects funded under the Multilateral Fund, providing records of all projects approved by the Executive Committee, including, among many others, the conditions of approval, conversion technology, incremental capital and operating costs, completion date.

¹⁰ Project completion reports submitted by implementing agencies provide records of implementation of all approved projects, including information on actual expenditure of the approved incremental capital costs and actual prices of the blowing agents used before and after conversion of the projects, actual technology used, and lessons learned from the use of the technology.

decision XIX/6 in the Multilateral Fund context, supported by Annex V;

- (e) Incentives and opportunities for co-financing; and
- (f) Recommendations.

8. In preparing this paper, consideration was given to the input received from Executive Committee Members as requested by decisions 53/37(l) and 54/40. In regard to decision 54/40, comments were received from the Governments of China, the Dominican Republic, Germany and Lebanon and from UNDP. A number of the comments relate to detailed incremental cost issues. These will be relevant to the consideration of stand alone projects in due course, in particular during the Secretariat's project review process. Comments also relate to policy issues such as the treatment of IOC for HCFC conversion projects, resolution of which has not been specifically proposed in this paper. Other comments have been taken into account in the preparation of the paper as appropriate. The comments are reproduced in full in Annex VI to the present paper.

I.3 Policies for funding HCFC phase-out

9. The evaluation of the incremental costs of Multilateral Fund projects is based on the general principles agreed by the Parties to the Montreal Protocol at their 2nd Meeting.¹¹ On the basis of these principles, and on the Indicative List of Categories of Incremental Costs, the Executive Committee has developed specific policies and guidelines for categories of incremental costs in different industrial applications. In the principal sectors of foam and refrigeration, policies have been tailored to projects for CFC phase-out. Projects for the phase out of HCFCs have similarities, but some important differences that require reconsideration and possible amendment of existing rules.

10. Funding of Multilateral Fund projects has been based on the assessment of eligible ICC and IOC. ICC are related to the additional equipment that would be needed to replace ozone depleting substances (ODS) with the alternative technology selected by the enterprise, technology transfer, training, trials and commissioning. IOC reflect changes in costs attributable to the conversion to ODS alternatives and arise from changes in chemicals used in the manufacturing process such as propellants, refrigerants or foam blowing agents. The level of IOC is influenced by fluctuations in prices of raw materials and the period of time over which such costs are paid. As decided by the Executive Committee, the duration of IOC in Multilateral Fund projects has varied among industrial sectors from zero (no IOC) for enterprises manufacturing compressors or MAC systems to four years for aerosol and flexible slabstock manufacturing enterprises (see Annex I).¹²

11. As the number of phase-out projects increased, capital costs became well known and generally decreased over time. The input data for calculation of IOC always contained uncertainties that frequently did not lend themselves to prior verification. However the very large number of projects reviewed in the principal sectors enabled the emergence of broad norms with

¹¹ Appendix 1 of decision II/8 (Financial Mechanism).

¹² The duration of IOC for the sectors where HCFC technologies have been chosen to phase-out the use of CFCs in Article 5 countries is presented in Annex I to this document.

which requested IOC could be compared. Costs for sector and national phase-out plans were subsequently reviewed with the benefit of this experience.

At the present time and with the current stage of commercialisation of new technologies 12. in Article 5 countries, there is a high degree of uncertainty regarding the precise quantification of the cost parameters that comprise IOC in HCFC phase-out projects. For example the quantities and proportions of chemicals in new foam formulations and the prices and availability of these in Article 5 countries, particularly HFCs. However, if the current policies and criteria for funding ODS phase-out remain unchanged, IOC in HCFC phase-out projects in both the foam and refrigeration sectors would take a larger share of total project costs than was typical for similar CFC phase-out projects. IOC, being the only support actually paid in cash, have provided an incentive to enterprises during the CFC phase-out. However the maximum financial incentive is obtained by selecting the least economically sustainable technology option, that is, the option with the highest IOC. The analysis undertaken in this document attempts to show the implications of these cost components on Multilateral Fund funding obligations. However, it would be difficult to provide appropriate technical guidance to the Executive Committee on the costs of sectoral or national phase-out plans related to the conversion of manufacturing capacity without project-by-project cost assessment experience.

13. Special funding options have been agreed by the Executive Committee for funding projects from low-volume consuming (LVC)¹³ countries with manufacturing facilities by establishing a special funding window for investment projects where the cost-effectiveness threshold values¹⁴ would not apply. However, for the phase-out of HCFCs, Article 5 countries have been categorized in two groups, namely countries with HCFC consumption in the refrigeration servicing sector and countries with HCFC consumption in both the manufacturing and refrigeration servicing sectors¹⁵. For the phase-out of ODS by small and medium-sized enterprises (SMEs) the guidelines provided for a funding window to facilitate conversions of significant groups of small enterprises in the aerosol and foam sectors from non-LVC countries. Whether or not the Executive Committee may wish to continue with a similar practice in the case of HCFCs is an issue for further consideration by the Executive Committee.

14. As HCFCs¹⁶ are controlled substances under the Montreal Protocol, specific decisions addressing the phase-out of these ODS have been taken by the Parties since their 5th Meeting in November 1993, and by the Executive Committee since its 12th Meeting in March 1994. Of particular importance to the phase-out of HCFCs are those decisions of the Executive Committee that request implementing agencies to provide a full explanation of the reasons why conversion to HCFC-based technology was recommended, including analysis of prospective non-HCFC alternatives. Furthermore, it had to be made clear that the enterprises concerned had agreed to

¹³ A LVC country is a country with a CFC baseline consumption of 360 ODP tonnes. As of March 2008, there are 102 Article 5 countries classified as LVC countries.

¹⁴ Cost-effectiveness threshold values applicable to different industrial sectors were adopted by the Executive Committee at its 16th Meeting as a way to prioritize approval of investment projects. The cost-effectiveness value is calculated as the ratio between the sum of the total incremental capital and operating costs and the total amount of ODS to be phased out in ODP kilograms. Additional information on cost-effectiveness and the threshold values adopted by the Executive Committee are presented in Annex I to this document.

¹⁵ The guidelines for the elaboration HPMP as agreed by the Executive Committee at its 54th Meeting are based on this classification of Article 5 countries.

¹⁶ All HCFC decisions adopted by the Parties to the Montreal Protocol and the Executive Committee are presented in chronological order in Annex I to the present document.

bear the cost of subsequent conversion to non-HCFC technologies. Information on alternative technologies provided by implementing agencies over the years as a result of these decisions by the Executive Committee has also informed the review of prospective technologies considered in this document.

15. At its 53rd Meeting the Executive Committee considered the policy framework for funding the phase-out of HCFCs, and decided that the existing policies and guidelines of the Fund would be applicable to funding HCFC phase-out unless otherwise decided in light of, in particular, decision XIX/6 (paragraph d of decision 53/37). Pending determination of the eligibility of funding second conversion projects, it would not be possible for stand alone projects for HCFC phase-out in enterprises that had received Multilateral Fund funding for conversion to HCFCs to be submitted. However with a minimum of 65 percent of current HCFC consumption in the foam sector estimated to be associated with enterprises that have not so far been supported by the Multilateral Fund, there is scope for stand-alone projects to be prepared and submitted prior to reconsideration of policies related to second conversions.

Subsequently, at its 54th Meeting, the Committee adopted guidelines for countries to 16. develop a staged approach to the implementation of their HPMP through developing overarching plans to achieve total phase-out of HCFCs. Depending on the availability of resources, countries should employ these guidelines to develop, in detail, stage one of the HPMPs, which would address how countries would meet the freeze in 2013 and the 10 per cent reduction in 2015, with an estimate of related cost considerations. Accordingly, countries with HCFC use only for servicing refrigeration systems would be required to develop an HPMP with activities similar to those being required for RMPs and TPMPs, while countries with HCFC-based manufacturing enterprises would develop activities in the context of national or sector performance- based plans. The guidelines also allow countries that choose to implement investment projects in advance of completion of the HPMP to do so, provided that the approval of each project results in a phase-out of HCFCs that counts against the consumption identified in the HPMP as a starting point for aggregate reductions, and that no such projects could be approved after 2010 unless they were part of the HPMP. If the individual project approach was used, the submission of the first project should provide an indication of how the demonstration projects related to the HPMP and an indication of when the HPMP would be submitted (decision $54/39)^{17}$.

17. This discussion paper has therefore also been prepared against the background of the policies and guidelines related to HCFCs as outlined above and in Annex I of the document.

I.4 Overview of HCFC uses

18. The total consumption of HCFCs of 363,372 metric tonnes in all Article 5 countries in 2006 is more than two times the CFC consumption of 178,144 metric tonnes reported in 1995 when the maximum amount ever of CFCs was reported. However, the overall negative effect of HCFCs on the ozone layer (i.e., 25,765 ODP tonnes in total) is lower than that of CFCs (176,405 ODP tonnes) due to their lower ozone depleting potential¹⁸.

¹⁷ The full text of decision 54/39 is presented in Annex I to the present paper.

¹⁸ These figures do not include consumption of ODS by the Republic of Korea, Singapore and United Arab Emirates (i.e., Article 5 countries that have not received assistance from the Multilateral Fund).

- 19. The 2006 HCFC consumption in Article 5 countries can be characterized as follows:
 - (a) Consumption of HCFC-141b, HCFC-142b and HCFC-22¹⁹ represented more than 99 per cent of total HCFC consumption. Small levels of HCF-123 and HCFC-133 (0.6 per cent) have been reported in very few countries;
 - (b) HCFC consumption in 71 countries was below 360 metric tonnes. Twenty nine other countries²⁰ either reported zero consumption or did not report any consumption;
 - (c) HCFC-141b was used in 40 Article 5 countries²¹, 20 of which had a consumption below 10 ODP tonnes (91 metric tonnes), while HCFC-142b was used only in 19^{22} Article 5 countries, 18 of which had a consumption below 10 ODP tonnes (154 metric tonnes);
 - (d) Seventy²³ of the 117 Article 5 countries that reported consumption of HCFC-22²⁴ had consumption below 10 ODP tonnes (182 metric tonnes); and
 - (e) HCFCs were mainly used in the manufacturing of foam products (32.5 per cent of the total HCFC consumption), and in the refrigeration manufacturing and servicing sub-sectors (66.2 per cent). Small amounts were also used in the aerosol (0.2 per cent), fire extinguisher (0.1 per cent) and solvent (1.0 per cent) sectors.²⁵

20. These data indicate that there are a few countries with a high level of HCFC consumption and the presence of a large number of SMEs among Article 5 countries. These conclusions are supported by the fact that, based on the analysis of funded individual foam projects, more than 80 per cent of all foam enterprises that converted from CFCs to HCFC-based technologies were located in no more than 12 Article 5 countries. In the same manner, it is estimated that more than 70 per cent of all foam enterprises in Article 5 countries had an annual CFC consumption below 40 ODP tonnes per year.

21. Taking into consideration that about 99 per cent of HCFC consumption occurs in the foam and refrigeration sectors, this paper addresses only these two sectors in order to gain experience and achieve early results in reducing HCFC consumption at the national level. However in due course it will be necessary to develop a similar understanding of technology and cost structures in the remaining sectors where HCFCs are consumed.

¹⁹ The ODP values of HCFC-141b is 0.11, of HCFC-142b is 0.065 and of HCFC-22 is 0.055.

²⁰ Twenty seven of the 29 countries are currently classified as LVC countries.

²¹ Excluding 1,028.7 ODP tonnes (9,352 metric tonnes) consumed by Republic of Korea, Singapore and United Arab Emirates.

²² Excluding 126.7 ODP tonnes (1,949 metric tonnes) consumed by Republic of Korea and Singapore.

²³ Excluding 1,213.9 ODP tonnes (22,071 metric tonnes) consumed by Republic of Korea, Singapore and United Arab Emirates.

²⁴ An additional 16 Article 5 countries had reported HCFC-22 consumption in 2005.

²⁵ HCFC surveys conducted by UNDP for 12 selected Article 5 countries (UNEP/OzL.Pro/ExCom/51/Inf. 2).

II. INCREMENTAL COSTS FOR PHASING OUT HCFC CONSUMPTION IN THE FOAM SECTOR

22. Through the assistance of the Multilateral Fund over 89,370 ODP tonnes of CFCs used as foam blowing agent have been phased out in Article 5 countries. These include CFC-11 used in flexible and rigid polyurethane foams and CFC-12 in extruded polyethylene and polystyrene foams sheets and nets. Article 5 countries selected permanent technologies to phase-out CFC-11 used in the rigid and integral skin sub-sectors, including water-based systems, hydrocarbons (pentanes) for enterprises that could safely operate foam producing equipment using flammable substances, as well as HCFCs as a transitional technology. The use of HCFCs as an alternative blowing agent accounted for about 40 per cent of all CFCs phased out. The use of CFC-11 and CFC-12 in the other foam sub-sectors was phased out using permanent conversion technologies²⁶.

23. In most non-Article 5 countries, foam blowing technologies based on use of HFCs (mainly HFC-245fa, HFC-365mfc and its blend HFC-365mfc/HFC227ea), methyl formate, and other less widely used technologies have been deployed as replacement for HCFCs used initially as transitional CFC phase-out technologies in the same manner as in Article 5 countries. Although their current availability is limited in Article 5 countries due to lack of demand, these technologies could be used in Article 5 countries also for phasing out HCFCs as a blowing agent.

II.1 Range of costs for phasing out HCFCs

24. Similar to the phase-out of CFCs in foam applications, the incremental capital costs (ICC) for conversion from HCFCs to non-ODS-based technologies depends on the enterprise's existing baseline equipment; the type of foam products being manufactured and the volume of production; the alternative blowing agent selected; and the location of the enterprise, which in several cases could be an important factor for deciding whether or not to select a technology that uses flammable substances.

Ranges of incremental capital costs

25. As requested in decision 53/37(i), two parallel ICC estimates for the cost benchmarks/ranges in relation to HCFC substitute technologies in foam applications were made. One has been based on the retrofit of existing equipment and another on the replacement of existing equipment for the following alternative technologies: water-based systems, hydrocarbons (both pentane and cyclopentane), HFC-245fa and methyl formate. The description below explains the reasons for two parallel estimates.

26. For the conversion from HCFCs to HFC, water-based systems or methyl formate technology:

(a) Based on existing policies, no additional capital costs for replacing existing equipment will be required by all the rigid polyurethane and integral skin foam

²⁶ CFC-12 used for producing extruded polyethylene and polystyrene foam sheets was phased out mainly with butane and liquid petroleum gas (LPG). CFC-11 in flexible slabstock polyurethane foam sub-sector was phased out using methylene chloride and liquid carbon dioxide while CFC-11 used in moulded polyurethane foam was phased-out using water-based systems.

enterprises that upgraded their production facilities to allow for the interim use of HCFC blowing agents with assistance from the Multilateral Fund, except where such a need is technically justified and fully demonstrated²⁷. Costs related to technology transfer, training, trials and commissioning would be required to adapt the alternative technologies to local conditions;

- (b) The same conditions as in paragraph (a) above will apply to enterprises that have modified or replaced their CFC-based equipment for use with HCFCs without assistance from the Multilateral Fund, since such enterprises would have similar baseline as those that were assisted by the Multilateral Fund. Similarly the same conditions will apply to enterprises that established new facilities with high pressure dispensers. Assistance for technology transfer, training, trials and commissioning would be required; and
- (c) Capital cost for retrofit or replacement of existing baseline equipment as well as technology transfer, training, trials and commissioning, might be required only for those enterprises that still process HCFC-141b foam on hand-mixing facilities and possibly low pressure dispensers either installed after the existing eligible cut-off date of 25 July 1995 or that were not eligible for funding during the Multilateral Fund intervention. The mode of funding will, however, depend on eligibility rules that may be decided by the Executive Committee. Thus, cost benchmarks for the replacement option have been estimated to address such an eventuality.

27. Conversion to pentane-based technologies for rigid or integral skin polyurethane foam enterprises will involve major capital costs compared to other available technologies. These will require high pressure dispensers suitable for use with hydrocarbon blowing agents, new polyol pre-mixers, hydrocarbon storage systems, and safety equipment to handle flammable substances. Local works to accommodate the hydrocarbon storage system and plant modifications would also be needed. In some circumstances plant relocation could be required. However, recent developments in the hydrocarbon technology and equipment design would appear to make the application of the technology more cost-effective for medium scale foam producing enterprises (Appendix 2 of Annex III).

28. Table II.1 below provides a summary of the ICC ranges for various foam applications. These costs are based on enterprises with only one foam dispenser and auxiliary equipment in the baseline, and with HCFC consumption of 5, 25 or 75 metric tonnes (or 0.6, 2.8 or 8.3 ODP tonnes) for manufacturing rigid foams, or 10 or 30 metric tonnes (or 1.1 or 3.3 ODP tonnes) for manufacturing integral skin foams. These levels of consumption represent typical small scale, medium scale and large scale operations. The minimum cost in the range was based on retrofitting all required equipment items, while the maximum cost was based on the cost of replacing old equipment with new equipment, and represent the absolute levels. Costs of technology transfer, training and trials, which are a component of ICC, were estimated at a higher level than for the transition from CFCs to HCFCs due to an anticipated need for more

²⁷ As a requirement for funding Multilateral Fund projects, enterprises converting to HCFC-based technologies had to make a commitment, together with their Governments, to phase out the residual ODP without further assistance from the Multilateral Fund. Almost all the justifications for the use of HCFC-141b in Multilateral Fund projects confirm that the final conversion would not require additional investment in equipment.

activities and higher amounts of chemicals to optimise foam formulations resulting in potentially higher cost of trials than was the case with transition to HCFC-141b.

29. The calculations show that in all cases except conversion to hydrocarbon technology the retrofit costs are much lower than the replacement option. In the case of conversion to hydrocarbon technology, it was observed that the difference between the cost of a retrofit and that of replacing the existing dispenser is minimal. Incremental capital costs for HFC-365mfc and methyl formate would be similar to those of HFC-245fa, except for possible replacement of storage tanks.

Foam application	HFC-245fa/HFC-365mfc/ methyl formate		Water-base	ed systems	Pentane					
	Low	High	Low	High	Low	High				
Panels and domestic and commercial refrigeration										
Retrofit	30,000	60,000			375,000	710,000				
Replacement	100,000	195,000			385,000	780,000				
Pipe in pipe and th	Pipe in pipe and thermoware (*)									
Retrofit	30,000	60,000	25,000	55,000	375,000	710,000				
Replacement	100,000	195,000	95,000	180,000	385,000	780,000				
Spray foam (**)										
Retrofit	15,000	55,000	15,000	55,000						
Replacement	50,000	110,000	60,000	110,000						
Discontinuous bloc	Discontinuous block (box) foam (***)									
Retrofit	15,000	55,000	15,000	40,000						
Replacement	85,000	140,000	65,000	95,000						
Integral skin foam										
Retrofit	40,000	70,000	75,000	125,000	265,000	405,000				

Table II.1: Summary of incremental capital cost ranges for various foam applications (US \$)

(*) Water-based systems would have limited application in pipe in pipe while pentane would have limited applications in thermoware.

(**) The flammability of pentanes would make their on-site application unacceptable.

(***) Box foam operation would make the use of pentane risky.

Ranges of incremental operating costs

30. The levels of incremental operating costs for conversion from HCFCs to non-ODS-based technologies depend mainly on the nature of the new formulations and the relative prices of chemicals used in those formulations. Costs associated with increase in foam density, where applicable, and in-mould coating chemicals used in water-blown integral skin foams could increase the level of operating costs. For hydrocarbon technologies additional maintenance and energy usage costs due to installation of additional new equipment, and additional insurance cost due to the use of flammable substances, also drive up the IOC.

31. The proportions of main chemical ingredients in foam formulations, namely the blowing agent, the polyol and the isocyanate (or MDI^{28}) and their prices are the key determinants of the level of IOC. Prices of these main chemical ingredients have varied widely among Article 5 countries and continue to be so as shown in Table II.2 below. As per the experience with the

²⁸ MDI: methylene di-phenyl di-isocyanate.

phase-out of CFCs, this situation could result in substantial incremental operating costs for one enterprise but savings for another enterprise for the same type and amount of foam produced, depending on the prices of some or all of the ingredients, and the price differences before and after conversion. The use of relative foam system prices (for HCFC and alternative blowing agent) instead of the prices of individual chemicals where enterprises use premixed systems could help to mitigate some of the discrepancies in chemical prices.

Chemical	Prices US \$/kg				
	Low	High			
HCFC-141b	2.50	3.80			
MDI	3.00	3.50			
Pentane	1.90	2.50			
Cyclopentane	2.10	3.30			
HFC-245fa	10.40	12.00			
Methyl formate	2.20	3.20			

Table II.2: Current prices of chemicals used in foam formulations

32. Increase in foam density, which is a cost penalty resulting from the cost of additional foam material, has a significant impact on the IOC, representing 50 per cent or more of the total operating costs in some cases.²⁹ The levels of increases in foam density used in calculating incremental operating costs were based on the transition from CFC-11 to HCFC-141b, and need to be revisited for the phase-out of HCFC-141b. However, information currently available appears to indicate that foam density increase would not be an issue with the conversion from HCFC to HFC and methyl formate alternatives.

33. Ranges of IOC for the following alternative technologies: water-based systems, hydrocarbons (both pentane and cyclopentane), HFC-245fa and methyl formate were calculated. The calculations were based mainly on the functional proportions of main chemical ingredients in the foam formulations³⁰, their prices³¹ and, where applicable, factors that impact the level of the given IOC. The calculations were checked against approved projects to ensure consistency and accuracy.

²⁹ The levels of increase in foam density associated with different foam applications were approved at the 31st Meeting of the Executive Committee (decision 31/44) with a view to revisiting the issue in future and making modifications where necessary.

³⁰ The proportions are based on the functional relationships between the molecular weights of HCFC and the alternative chemical and, where available, any known mitigating factors (e.g. resulting from potential optimization).

³¹ The prices of HCFC-141b, pentane and MDI were based on the range of prices reported in project completion reports in the 2000 to 2006 period compared with the latest prices provided in March 2008 by some Article 5 countries through the bilateral and implementing agencies as well as information provided in comments received in response to Decision 54/40. The prices of HFC-245fa and methyl formate were based on prices provided by the manufacturers. The lower price of HFC-245fa is reported global list price for bulk containers (iso-tank) while the higher price is estimated price for small packages, based on a 15 per cent difference.

Plowing agent	Rigid	foam	Integral skin foam			
Blowing agent	Low	High	Low	High		
HFC-245fa	2.20	5.30	0.40	1.14		
Methyl formate	(1.40)	(2.20)	1.00	1.66		
Water-based systems	1.45	2.00	7.40	12.48		
Pentane	(1.25)	(2.20)	(1.84)	(2.84)		
Cyclopentane	(1.15)	(1.80)	(0.76)	(1.41)		

Table II.3: Summary of annual incremental operating cost ranges for various foam applications per metric kilogram of HCFC-141b phased-out (US \$/kg)³²

34. To demonstrate the scope of incremental operating costs at the enterprise level, the average unit incremental costs shown in the above table was applied to rigid foam enterprises with HCFC-141b consumption of 5 metric tonnes (0.6 ODP tonnes), 25 metric tonnes (2.8 ODP tonnes) and 75 metric tonnes (8.3 ODP tonnes), for a two-year period, which represents the current duration of operating costs in the rigid foam sector. The resulting indicative IOC are shown in Table II.4 below:

Table II.4: Total incremental operating costs calculated over two years at the enterprise level (US \$)

	Enterprise consumption (tonnes)								
Technology	5.0 metric ((0.6 ODP)	25.0 metric	(2.8 ODP)	75.0 metric (8.3 ODP)				
	Low	High	Low	High	Low	High			
HFC-245fa (50%)	19,140	23,490	95,700	117,450	287,100	352,350			
HFC-245fa (75%)	45,240	46,110	226,200	230,550	678,600	691,650			
Water-based system	12,615	17,400	63,075	87,000	189,225	261,000			
Methyl formate	(12,180)	(19,140)	(60,900)	(95,700)	(182,700)	(287,100)			
Pentane	(10,875)	(19,140)	(54,375)	(95,700)	(163,125)	(287,100)			
Cyclopentane	(10,005)	(15,660)	(50,025)	(78,300)	(150,075)	(234,900)			

35. The following observations were made on the analysis of the IOC:

- Significant reductions in incremental operating costs can be achieved when some (a) amounts of HFC-245fa are replaced with water in foam formulations. This, however, depends on the trade-offs between economy and foam insulation properties that the foam producer wants to achieve;
- (b) The use of methyl formate results in incremental operating savings for both rigid and integral skin foam applications because of its comparatively low price and low level of usage³³;
- For rigid foam applications converting to pentane-based technologies has in the (c) past (transition from CFC-11) resulted in significant incremental operating costs, even though the blowing agent had a relatively lower price as well as a lower usage rate of about half that of the HCFC-141b it would replace. This was

³² Incremental operating costs associated with the phase-out of HCFC-22 may be higher than the estimated amounts presented in the table, as HCFC-22 is usually cheaper than HCFC-141b. ³³ The price is within the same range as the pentanes and 1 part HCFC-141b is replaced by 0.5 part methyl formate.

attributed to an increase in foam density, and additional maintenance, insurance and energy costs. However, the overall conversion for rigid foam applications from HCFC-141b to pentane based technologies still resulted in operating savings even after taking into consideration a 10 per cent increase in foam density and additional maintenance, insurance and energy costs, consistent with the methods of calculating the IOC of Multilateral Fund projects in this sector; and

(d) HFC-245fa and water-based systems, especially in integral skin foams where in-mould coating is used to improve the quality of the foam to meet market requirements, have the highest IOC.

36. Under continuation of current policies for calculation of incremental operating costs in this sector, IOC will be a major component of the overall cost of projects to phase out HCFCs and priority should be given to addressing issues linked to their calculation (i.e., duration, prices of chemicals and price structure, foam densities and other factors). During the phase-out of HCFCs the nature of formulations, particularly of HFCs and methyl formate, will play a significant role in determining the appropriate level of IOC for an enterprise. Hence project preparation may have to be approached somehow differently and with more involvement of systems suppliers at an earlier stage than before.

II.2 Special consideration of appliance and non-appliance foam applications

37. Under the Multilateral Fund, funding for phasing out CFC-11 used as a blowing agent has traditionally been done under the foam sector for enterprises manufacturing rigid polyurethane foam (known as non-appliance foam) with cost-effectiveness threshold of US \$7.83/kg. It was however addressed under the refrigeration sector for enterprises manufacturing domestic and commercial refrigeration equipment (known as appliance foam) with sub-sector specific cost-effectiveness thresholds of US \$13.76/kg for domestic refrigeration and US \$15.21/kg for commercial refrigeration. The cost-effectiveness thresholds in domestic and commercial refrigeration sub-sectors consists of integrated values covering ICC and IOC in both foam and refrigeration manufacturing processes at an enterprise level.

38. A large number of Multilateral Fund projects under the domestic and commercial refrigeration sectors converted their foam insulation to HCFC-141b technologies, while the refrigerant component was converted to non-HCFC alternatives. Therefore, the next stage of the conversion of HCFC-141b to non-ODS alternatives will need to be addressed under the foam sector since there is no refrigeration component.

II.3 Conversion of HCFC-142b use in Article 5 countries

39. HCFC-142b and HCFC-22 have been used widely in non-Article 5 countries as replacements for CFC blowing agents since the early 1990s, particularly in extruded polystyrene insulation foam boardstock in the construction industry. Such HCFCs have been phased out in the majority of these countries³⁴.

³⁴ The main technologies selected are: HFC-134a, HFC-152a, CO2 (or CO2/alcohol) and isobutane. However, in Canada and the United States the phase-out has been more difficult because of particular product requirements, especially in the residential sector. The use of HCFC-142b and HCFC-22 is therefore expected to continue until 2010 in these countries.

40. Currently, the experience available in the Multilateral Fund for phasing out HCFC-142b/HCFC-22 is very limited, and only exists in relation to extruded polystyrene foam sheets and nets. However, over the last several years, the strong development of the insulation market in China, and to a lesser extent in a few other Article 5 countries, is driving the rapid introduction of extruded polystyrene enterprises using HCFC-based-technologies³⁵. Further study of this foam sub-segment in relevant Article 5 countries needs to be undertaken in order to clarify the technological and cost issues involved.

II.4 Active participation of systems houses in the phase-out of HCFCs

41. In rigid and integral skin polyurethane foam production, most enterprises rely on chemicals that are commercially premixed with the blowing agent and other essential ingredients (premixed polyols) that are provided by companies known as systems houses. During the first phase of CFC phase-out, systems houses played a key role in the market penetration of HCFC-141b in Article 5 countries.³⁶ Funding was approved for a limited number of systems houses for producing suitable non-CFC based pre-blended polyols as well as providing technology transfer and training for their customers (i.e., downstream foam enterprises).

42. The transition from HCFC to non-ODS technologies could be challenging in Article 5 countries due to the current limited availability of HFCs, and potential handling and processing problems in some regions when using the newer technologies such as HFC-245fa. To mitigate such problems, systems houses in Article 5 countries may need to be encouraged or supported ahead of the project preparation phase to explore the possibilities of developing or optimizing suitable formulations for their local markets and possibly neighbouring countries where low levels of HCFC consumption would not make a systems house operation feasible.

43. Other critical areas that could be addressed through collaboration between local systems houses and the foam industry are the following:

- (a) Reduction in the costs of foam formulations which are based on expensive blowing agents (i.e., HFC-245fa or HCF-356mfc), providing a competitive insulation product in cost-sensitive applications (e.g. by using a blend with hydrocarbon or co-blowing with water);
- (b) Development and introduction of hydrocarbon-based premixed polyols, which could accelerate the move away from HCFCs in Article 5 countries; and
- (c) Training and technical assistance to enterprises that selected HFC-based technologies to ensure that those enterprises conduct their production activities in a manner that poses the lowest risk to the global environment, such as limiting emissions of HFCs during foam production.

44. Demonstrations projects linked to interested systems houses could be one of the ways to promote the optimizing of systems and introducing phase-out technologies to the local industry.

³⁵ This sector alone has an additional 20,000 metric tonnes per year consumption since previously assessed in 2001 (2006 Assessment Report of the Rigid and Flexible Foams Technical Options Committee).

³⁶ Eleven group projects involving 290 SMEs centred around local indigenous systems houses were approved in four countries at a total cost of US \$7.2 million. The direct impact of involvement of the systems houses was a phase-out of over 1,300 ODP tonnes of CFC-11.

Systems house project to validate HCFC alternative foam systems

45. It is deemed essential for a successful Multilateral Fund financed HCFC phase-out programme that cost-effective, environmentally sound phase-out technologies that have been validated for application in Article 5 countries be available in a timely manner. Thus, the objective of the programme is to engage selected systems houses in Article 5 countries to validate new or considerably revised technologies for use in HCFC-phase-out projects. It is essential that the investigation time should match that needed to prepare the first HPMPs so that investment projects can benefit immediately from the validation exercise. Therefore the programme should start as soon as possible and include: emerging technologies that are non-ODS/low GWP as well as low cost options for conventional, non ODS/low GWP technologies.

46. Only the ICC of the participating downstream enterprises in the programme is proposed to be approved up-front as the IOC will be part of the investigations and paid during or following implementation of the programme. The cost of the project per system house is estimated to be in the range of US \$145,000 and US \$210,000 for work on non-flammable blowing agents and US \$200,000 and US \$320,000 for flammable blowing agents. The ICC range for each downstream enterprise converting to non-flammable blowing agent is estimated to be US \$13,000 to US \$20,000 and US 79,000 to US \$165,000 for conversion to flammable blowing agent. The breakdown of the ICC is provided in Appendix II of Annex III to this document.

III. INCREMENTAL COSTS FOR PHASING OUT HCFC CONSUMPTION IN THE REFRIGERATION SECTOR

47. Currently, HCFC-22 is the predominant substance used in the refrigeration and air-conditioning sector in Article 5 countries. In 2006, 123 Article 5 countries reported an HCFC-22 consumption of 12,375 ODP tonnes (225,000 metric tonnes) used in the refrigeration and air-conditioning sector for manufacturing new equipment (mainly air-conditioners and to a lesser extent commercial refrigerators) and servicing existing equipment³⁷. There are a number of other HCFCs that feature in the refrigeration sector, particularly HCFC-123 in chillers, and HCFC-124 and HCFC-142b as drop-in alternative refrigerants for CFC-12. Since it appears that there are no dedicated manufacturing capacities in Article 5 countries for products using these refrigerants, and since the quantities used are very small compared to HCFC-22, these HCFCs have not been further investigated in this paper.

III.1 Sectors and sub-sectors

48. In air conditioning, HCFC-22 has for more than 60 years been the predominant refrigerant, i.e. the refrigerant of choice for small, medium and large-size air conditioning systems, the latter with the exception of centrifugal chillers. It appears that almost all of the global manufacturing capacity for small residential air conditioning systems is concentrated in a small number of Article 5 countries (less than 15). The Secretariat has, for the purpose of this paper, defined the sub-sectors of room and split air conditioning, which also covers residential products; of commercial ducted and packaged air conditioning, that are medium-size, air-to-air systems used e.g. on the roof of larger commercial buildings; and HCFC-22 chillers, which have capacities below 500 kW used for air conditioning as well as for a number of process cooling

³⁷ It is estimated that an additional consumption of 300 ODP tonnes (5,500 metric tonnes) of HCFC-22 have been used as a blowing agent in combination with HCFC-142b for production of polystyrene foam.

applications in industry. The air conditioning sector is dominated by large industries with centralised manufacturing facilities.

49. Commercial refrigeration is the sub-sector with the most diffuse product range and variety as all refrigeration equipment used in commercial enterprises and not explicitly belonging to another sub-sector fall into this category. The products are largely, but not exclusively, used in retail, for the display and sales of refrigerated and frozen goods. Other applications range from water coolers to storage rooms for meat and dairy products. The wide range of applications and the catering to specific needs leads to a very dispersed industry with very few large but many medium and small enterprises producing highly customised products. There the borders between some parts of the commercial refrigeration sector and the service sector are blurred. Commercial refrigeration systems are probably manufactured in both every large consuming country as well as to some extent in most of the low consuming ones. HCFC-22 use in the sector has been driven, inter alia, by CFC-12 phase-out, and by the fact that service contractors and small companies have HCFC-22 infrastructure available for air conditioning servicing. These companies simplified their operations significantly by using the same refrigerant for both the service of air conditioning systems as well as for the assembly, charging and servicing of commercial refrigeration equipment.

III.2 Alternatives

50. For the different sectors, a number of alternative refrigerants are available. Technically, there are many possibilities to generate low temperatures for refrigeration. This paper concentrates on those that have, at the present point in time, a level of development and a field of application that suggest they might be candidates for HCFC-22 replacement in Article 5 countries in the mid-term, i.e. which might be relevant for Multilateral Fund projects related to the 2013 freeze or the 2015 consumption reduction step. These alternatives are essentially HFC refrigerants, hydrocarbons and ammonia. A detailed description of alternative technologies can be found in Annex IV.

HFC are refrigerants with similar general characteristics as CFC and HCFC; some 51. important specifics of their technology are well known from the introduction of HFC-134a during the CFC-12 phase-out. The replacements for HCFC-22 which are most widely used in non-Article 5 countries all have a global warming impact (GWP) higher than HCFC-22. Most of these were actually introduced more than 12 years ago during the replacement of CFCs. Only HFC-134a has a lower GWP than HCFC-22 and is presently being used in particular for small capacity applications. For Article 5 countries, it appears that these applications cover a large share of the equipment likely eligible for funding. HFC-134a has, so far, not been used to replace HCFC-22, therefore cost data are not available. A number of HFCs have been developed to replace HCFC-22 in specific applications, and have been successfully and widely introduced in both non-Article 5 and Article 5 countries. Some, in particular HFC-410A, have characteristics that require substantial changes in equipment design, component manufacturing and service equipment due to their higher working pressures. There are a number of blends of HFCs and hydrocarbons available that allow simple drop-in conversion of HCFC-22 equipment to ODSfree alternatives to be carried out in many cases.

52. Hydrocarbons and ammonia are low-GWP refrigerants, which have continuously been used for many years. Both face safety related challenges. While the necessary technology to safely handle these refrigerants is well known, these characteristics lead to a higher incremental

capital cost at the time of conversion, as well as restrictions regarding the use of the related equipment. The main issues are:

- (a) Hydrocarbons, in particular iso-butane, propane and propylene are, like HCFC-22, excellent refrigerants. Their flammability requires safe handling in manufacturing and during servicing, limits the amount of hydrocarbons charged per equipment and could impose restrictions with regard to the location of production facilities (e.g. outside residential areas) and, for larger systems, the equipment installed (e.g. ventilation requirements, separation from public). Hydrocarbons have been successfully used in refrigerators, where they are a fully established and widely used technology, as well as in small air conditioning and small commercial refrigeration equipment; and
- (b) Ammonia technology has in the past been used in large refrigeration plants, in particular related to food processing and the chemical industry, and large chillers. The know-how needed to assemble and service ammonia refrigeration equipment is different from CFC/HCFC/HFC technology. Ammonia is presently used in a number of Article 5 countries, mainly because of historical reasons, but has proven difficult to introduce in countries where there are no prior uses. Similar to larger hydrocarbon systems, ammonia is typically restricted in terms of the location of equipment installed.

53. The available information regarding energy efficiency indicates that there is, for most relevant applications, both an HFC as well as a low GWP refrigerant which can lead to the same or better energy efficiency as provided by HCFC-22 equipment. This might, in some cases, require significant redesign or use of an optimised compressor, both resulting in some cost increases that can for the foreseeable future only be quantified on a case-by-case basis.

54. It is likely that at least for the initial stage of HCFC phase-out, the alternatives described above will represent all of the potential choices. Research regarding the development of low GWP refrigerants for the MAC sector with no flammability and low toxicity are reported, but presently it is unclear if and when they will be commercialised. More importantly, their applicability for HCFC-22 using sub-sectors is unclear, since these pose specific challenges for a replacement. CO₂ has been under development as an alternative refrigerant for the last 20 years, and is presently used in demonstration trials. Its main applications are small commercial systems and, in large, centralised supermarket systems, use for low temperatures. In small systems CO₂ requires a fundamentally different design and components, and has, due to its high pressure in this particular application, very different service characteristics than other refrigerants. In addition, the energy efficiency in comparison to HCFC-22 suffers significantly at high outdoor temperatures. It remains unclear if and under what circumstances the technology will be developed sufficiently to break out of its present niche market. For large low temperature systems, the technology used is only a relatively small variation of commonly employed technology, but the number of applications in Article 5 countries where it can be used to replace HCFC-22 is likely to be very limited.

III.3 Specific challenges in the service sector

55. Air conditioning systems are used throughout the world for comfort cooling. In some countries this might be restricted to uses like hotels and hospitals, in others include offices, and

domiciles might also be included. HCFC-22 is likely to be used in virtually all air conditioning systems from very small window units to 500 kW capacity systems. Given the need for servicing of these systems, it is likely that HCFC-22 is used by the service sector in essentially every Article 5 country.

56. While many air conditioning units do not require much repair, their large and rapidly increasing number will lead to an overall high service demand. The widespread use of HCFC-22 in commercial refrigeration is further boosting service demand. The general structure of the service sector is known from the phase-out of CFC-12. In the efforts to phase-out CFCs, activities in this sector have been grouped with, in particular, activities relating to legislation and enforcement of licensing and quota systems, as part of RMPs and TPMPs.

57. Since HCFC-based manufacturing in the foam and refrigeration sectors as well as solvent use of HCFC appears to be limited to a small number of countries, it is likely that a large number of Article 5 countries will have HCFC consumption almost exclusively in the service sector. This would include the sub-sector for assembly and charging of commercial refrigeration equipment. In contrast to the situation for CFC phase-out, when in most countries at least some manufacturing (e.g. soft foams) was CFC based and could be addressed to support the country in fulfilling its phase-out obligations, in the case of HCFCs there might be no such option for many Article 5 countries. During CFC phase-out it became evident that it is not possible to address and monitor the service sector on an enterprise-by-enterprise basis, chiefly because of the number of enterprises involved, their small size and their often informal structure. Therefore, CFC phaseout under the Multilateral Fund has mainly relied on supply restrictions through licensing and quota systems, while at the same time enabling the service sector to cope with dwindling CFC supplies through training in good practices and the provision of tools and equipment. The support by the Fund for the service sector has at the same time assured governments that supply side regulations would not lead to significant problems in the servicing of refrigeration equipment. The results of this approach have so far generally been good. The new challenge for HCFC phase-out is that supply side management has to start much earlier in the phase-out schedule, and to continue over a longer time-frame.

58. The demand for HCFC-22 in the servicing sector is related to the import of HCFC-22 air conditioning equipment by Article 5 countries, which subsequently creates a demand for HCFC-22 in the service sector. In order to facilitate subsequent reductions in consumption for the servicing sector, it appears appropriate to consider on a national basis whether it is possible to limit the imports of HCFC-22 equipment, in particular air conditioners, at an early stage. This would have repercussions on the timing of the demand for funding the conversion of in particular HCFC-22 air conditioner manufacturing facilities. Such facilities would need to be converted early on to enable them to supply other Article 5 countries with HCFC-free air conditioning equipment.

59. For low volume consuming countries to be able to decide on import controls, there would need to be sufficient support for their service sector to minimise HCFC-consumption and to enable appropriate handling of alternatives. It might therefore be appropriate to consider funding HCFC phase-out activities in the service sub-sector and related sectors (assembly, charging and end-user) in countries with predominant consumption in the service sector in or even before 2010, with a view to facilitating compliance with the 10 per cent reduction step in 2015.

III.4 Cost considerations

60. In order to develop an understanding of the possible costs related to HCFC phase-out in the refrigeration manufacturing sector, experts with experience in Article 5 countries were consulted in gaining an understanding of the structure of the sectors and sub-sectors. In a next step, an attempt has been made to define one or two typical HCFC-using enterprises for each sub-sector. Using the experience in the phase-out of CFCs, as well as services of experts, price lists and other available data, allowed for an estimation of the range of ICC and IOC for each of the alternatives. The approach is based on the assumption of replacement or upgrade of existing facilities during their useful life, as was the practice during the period of CFC phase-out projects. Since several of the sub-sectors have no guidelines to determine the duration of the impact of the various longer or shorter IOC periods. Alternative technologies for the different sub-sectors, description of those sub-sectors, and conditions and results of the calculation of incremental cost resulting in indicative cost ranges are shown in Annex IV.

61. The approach of using a "typical" enterprise for the determination of incremental costs for manufacturing enterprises limits the uncertainty in estimating incremental capital cost per enterprise as the capital cost items will vary only within limits between different sizes of operations. But since the number of enterprises in a sector remains unknown, as well as the exact product ranges, extrapolation to determine conversion costs for entire sectors remains elusive for the foreseeable future. It should be noted that in case of CFC-phase-out, capital costs, but even more so the costs of items related to IOC (compressors, oils, refrigerants), usually decreased over time, and showed also significant variations in different markets.

62. The cost calculations for different model enterprises in the refrigeration manufacturing sector lead to the results presented in Table III.1. The operating cost are shown on an annual basis. If the Executive Committee would decide e.g. on a four-year duration, the values for the incremental operating costs shown in the table would increase accordingly. The calculation demonstrates that incremental operating costs of HCFC phase-out often take a larger share of the incremental cost than was typical for CFC-phase-out projects. It should be noted that those operating costs, being the only support under the Fund actually paid in cash, provide significant incentives to enterprises to convert their production early. On the other hand, the present way of the IOC provides an incentive to select the least economically sustainable technology, i.e. the option with highest per unit cost increase. The risks of problems during implementation, or of subsequent problems or retro-conversion to HCFC-22 is particularly high in such cases.

Sector/ sub-sector and type	Annual	I ICC (US \$)		IOC (US \$)	ICC (US \$)		IOC	ICC (US \$)		IOC
of equipment	production						(US \$)		(US \$)	
	(unit/year)	Max	Min	Annual	Max	Min	Annual	Max	Min	Annual
Air conditioning		R410A		R407C			R290			
Room and split AC	250,000	275,000	950,000	2,660,000	190,000	250,000	4,250,000	545,000	670,000	4,512,000
Commercial ducted and	1,000	245,000	145,000	36,600	120,000	80,000	28,500	n/a	n/a	n/a
packaged AC**	100									
Chillers	200	300,000	85,000	Tbd	n/a	n/a	n/a	n/a	n/a	n/a
Commercial refrigeration		R404A		R134a			R290			
Stand-alone units:	10,000	66,000	66,000	140,000	66,000	66,000	110,000	320,000,	320,000	230,000
commercial freezer										
Stand-alone units: vending	10,000							500,000	800,000	150,000
machines										
Condensing units	5,000	55,000	60,000	390,000	55,000	60,000	310,000			

Table III.1: Incremental capital and incremental operating cost forecast for selected project templates in the refrigeration manufacturing sector³⁸

63. The Secretariat has also attempted a preliminary estimate on the incremental costs for the service sector. The exact nature and volume of interventions in the service sector remains to be discussed, *inter alia* on the basis of the experience with RMPs and TPMPs. It appears that some major components of TPMPs, namely legislation and enforcement support, upgrading of technicians equipment and education as well as implementation monitoring, will continue to play an important role. The cost estimate assumes that it is necessary to provide additional funding for reviewing ODS legislation, as well as training programmes at a level of funding estimated according to the level of HCFCs consumption in the year 2006. The costs until 2015 were estimated to be between US \$110,000 for the lowest consuming and US \$13,940,000 for the highest consuming countries. The details of this estimate are presented in Annex IV.

IV. ENVIRONMENTAL ISSUES

IV.1 Decisions leading to the prioritisation of environmental issues

64. Decision XIX/6 calls for the Parties "to promote the selection of alternatives to HCFCs that minimize environmental impacts, in particular impacts on climate, as well as meeting other health, safety and economic considerations." It also provides direction to the Executive Committee that when developing criteria for the selection of projects and programmes to be funded it "gives priority to cost-effective projects and programmes which focus on *inter alia*, substitutes and alternatives that minimize other impacts on the environment, including on the climate, taking into account global warming potential, energy use and other relevant factors"

65. The nature of the term 'gives priority' could allow for a number of interpretations, including priority in <u>timing</u>, in <u>absolute technology selection</u> or in <u>funding provision</u>. Priority in terms of timing could be taken as a 'given' assuming that climate beneficial technologies are already available. However, there are foreseeable conflicts if measures to address the 'worst first' requirements of decision XIX/6 in the context of ODS phase-out are less climate beneficial (or even result in a climate dis-benefit) than other options available.

³⁸ This table provides the incremental operating cost as per presently available data. It should be noted that there is not only a potential of variation of incremental operating cost, but also that the different technologies have different susceptibility for such changes. Consequently, the cost ratio between the different technologies will likely shift.

66. Where climate neutral or climate beneficial technologies exist which are affordable, it might be in the interests of the Executive Committee to discourage the adoption of technologies that lead to a climate dis-benefit by determining not to provide Multilateral Fund funding support at all. There are previous precedents within the Multilateral Fund history. However, such an approach would need to leave the enterprise or country with a sufficient number of funded technology choices available. In preparing this paper, the Secretariat believes that it needs further guidance from the Executive Committee about whether this type of prioritisation is appropriate at this point in time.

67. In this present analysis, no further consideration has been given to the treatment of 'other environmental impacts' which are inferred in decision XIX/6. In principle, these could include such items as VOC emissions leading to the formation of low level ozone. However, since these are often localised factors, it is expected that they will be applied at that level and will be part of the beneficiaries technology selection.

68. Since this paper is set in the context of a consideration of costs, the work reported herein relates primarily to how the funding approach of the Executive Committee might be used to encourage the adoption of technologies with maximum climate benefits. Decision XIX/6 itself notes the need to take into account "global warming potential, energy use and other relevant factors". In assessing these indicators, the Secretariat has been keen to develop an approach that is sufficiently robust to act as a basis for a funding assessment, while ensuring that it is sufficiently sensitive to make meaningful climate comparisons. Additional information can be found in Annex V. Three basic methodologies have emerged:

- (a) The adoption of a methodology based solely on global warming potential (GWP);
- (b) The adoption of a methodology based in Life Cycle Climate Performance (LCCP); and
- (c) The adoption of a 'functional unit' approach to life cycle evaluation.

69. In its initial review, the Secretariat did not consider that a methodology based solely on GWP would wholly address the mandate of decision XIX/6, since it would be unable to account for 'energy use' as required within the decision. In addition, the approach would need to account for differences in life-cycle containment practices and recovery options if it was to properly reflect a fair technology comparison. This would, by definition, bring it into the assessment of life cycle components.

70. As with all Life Cycle Assessment (LCA) processes, the development of a formal LCCP is data-intensive and requires the input of a substantial number of variables, not all of which might be known, either to the enterprise or a country, at the time of the funding application. Even if they were available, it would be a substantial and potentially impractical task for the Secretariat to cross-reference and verify that these assumptions were appropriate. The LCCP methodology is therefore seen as unsuitable as a basis for a funding assessment.

71. With the GWP and LCCP approaches representing the two extremes of the spectrum, the Secretariat has been assessing intermediate options which might overcome the disadvantages of each. This has resulted in the initial evaluation of a 'functional unit' approach which offers the robustness of a simplified and less data-intensive methodology, while ensuring that the key

criteria outlined in decision XIX/6 (GWP, energy use and other relevant factors) can all be taken into account. It should be stressed that the evaluation to date has been limited to only one sector and requires further methodological development to ensure applicability across the range of projects and programmes envisaged under decision XIX/6. Nevertheless, the Secretariat believes it appropriate to set out the basic methodology at this stage, and the funding options that could be derived from it, in order to received early feedback from the Executive Committee on the proposed approach.

72. The 'functional unit' approach focuses on a <u>typical</u> use of the substance in a sector, called 'element', in order to characterise the impacts related to that 'element' throughout its lifecycle. For example, the contribution of a foam to energy efficiency can be quantified per unit area for a <u>typical</u> building maintaining an average 10^{0} C temperature differential (thermal gradient) across a building element. This typical application is then used as a 'proxy' for the total activities in a sector. The purpose is not to calculate the precise climate impact for each and every application, but to characterise these impacts so they can be used for comparing technologies. In practice, the primary output would be a <u>comparative</u> assessment of lifecycle climate impacts taking into consideration the GWP of the substitute, the charge size, the energy used in operation, and the emission functions through the life-cycle. Alternative technologies can be evaluated against the benchmark of the most cost effective technology which completely phases out ODS and leads to a similar climate impact as the original HCFC technology.

73. This approach needs further development and evaluation across a wider range of sectors to provide assurance that the basic methodology can be applied more widely. The Secretariat therefore seeks the mandate to continue this work on the current path or, as revised by the Executive Committee, in order to present a more concrete set of proposals at the 57th Meeting.

V. INCENTIVES AND OPPORTUNITIES FOR CO-FINANCING

74. In preparing this paper, the Secretariat was requested to consider financial incentives and opportunities for co-financing, which could be relevant for ensuring that HCFC phase-out results in benefits in accordance with paragraph 11(b) of decision XIX/6 of the Parties to the Protocol. In the meantime, the 54th Meeting of the Executive Committee decided to adopt in its decision 54/39 guidelines for the preparation of HPMPs. These guidelines encourage countries and agencies to explore potential financial incentives and opportunities for additional resources to maximize the environmental benefits from HPMPs. Co-financing can be levied either on the level of individual projects or national plans, or on an aggregated level, or both. Decision 54/39 establishes the requirement to look into co-financing associated with individual projects or programmes.

75. For the purpose of this paper, the issue of environmental benefits is understood to refer to climate change and the mitigation of greenhouse gas emissions. Phase-out projects under the Multilateral Fund create mitigation of the emission of greenhouse gases on different levels. The reduction of the production of HCFC-22 will lead to subsequent reductions in the co-production of HFC-23, a potent greenhouse gas. The reduction of the production and consumption of HCFCs will lead to a subsequent reduction in emission of these substances which also have relatively high GWPs. The replacements used in the same applications would also be emitted, some of which might be potent greenhouse gases. Finally, HCFC use as a refrigerant and, to a certain extent as a foam blowing agent, are closely related to energy consumption, being in turn linked to carbon emissions.

76. For phase-out projects implemented under the Multilateral Fund to attract co-financing will require, as a minimum, a climate-relevant indicator as proposed in section V of this paper. This should provide a good starting point to assess the possible contribution of projects under the Multilateral Fund to the objectives of other funding mechanisms.

77. A number of such funding mechanisms exist which might be suitable to provide co-funds for Multilateral Fund projects. Among them are funds from beneficiaries, mechanisms based on traditional funding models, national energy efficiency projects from governments or from industry, and market based mechanisms. These currently represent the most likely sources of co-financing.

78. Traditional funding models include funds which are in their structure similar to the Multilateral Fund, i.e. a number of donors provide funding, which is available to a group of recipients, according to the definitions developed by a controlling entity. The GEF falls into this group, as well as other climate or environment related funds on an international, regional, and individual donor country level. At present, this group of funds is rapidly growing both in terms of volume as well as in the number of mechanisms. The criteria and access modalities to some of these funds might not be compatible with the objectives of the Multilateral Fund.

79. In some countries, governments or electricity suppliers are operating energy saving funds. Typically, such funds can be expected to be compatible with Multilateral Fund projects, but they do not appear to be common in Article 5 countries.

80. The market based mechanisms issue carbon credits or carbon emission rights that are meant to offset carbon emissions occurring elsewhere by emission reductions achieved under certain well defined projects. The income generated from such undertakings is dependent on the market price for such rights or credits at the moment of sale. These mechanisms work on the basis of actual emission reductions, and require environmental additionality, i.e., the projects must lead to emission reductions that would not have occurred otherwise. Activities to maximize the environmental benefits could be interpreted as being additional.

81. There is already experience regarding co-financing of individual projects or programmes available within the Multilateral Fund and its implementing agencies. Almost all Multilateral Fund projects have been approved as grants to beneficiary enterprises and institutions in Article 5 countries, with the exception of a small number of projects where co-financing was needed as in the case of chillers. The level of grants had been determined on the basis of an analysis of eligible incremental costs. Other, non-eligible or non-incremental costs have been paid, in many instances, by the beneficiary enterprises, sometimes with the assistance of cash funding provided through payment of incremental operating costs.

82. Examples of non-incremental costs paid by the enterprises are: construction costs associated with plant conversion and capacity increase or technology upgrades beyond the baseline level³⁹. In addition, there is a large number of incentive programmes in the refrigeration servicing sector, which have been developed as part of RMPs, TPMPs and national phase-out plans, where partial funding is given to beneficiary end-users to retrofit or replace their ODS-

³⁹ These non-incremental costs have not been assessed and recorded by the Secretariat, and therefore quantitative information cannot be provided other than through the compilation of such additional information as might have been included in project documents.

based system to alternative refrigerants. These constitute examples for what could be seen as beneficiary co-funding in Multilateral Fund projects⁴⁰.

83. The centrifugal chiller replacement programme based on a funding window established by the Executive Committee at its 45th Meeting was approved on the understanding that there would be multiple benefits from replacing old CFC-based chillers by chillers with alternative technologies, and that funding would be disbursed only when co-financing had been assured⁴¹. Chiller projects were approved by the Committee at its 46th and 47th Meetings. A number of the projects were dependent on high beneficiary contributions, creating in essence an implementation facility similar to the incentive programmes mentioned above. Other projects were seeking to use other funding mechanisms such as the GEF, other environmental funds or funds from electricity companies associated with energy conservation. Funding from environmental funds started to materialise only 18 month after project approval, and are still not fully available. Funds from international finance instruments and electricity companies have not been available up to date, despite significant efforts.

84. It is likely that the projects would need to incorporate activities that might not be eligible under the present guidelines of the Multilateral Fund, while being funded from part of the cofinancing received. This might, for example, be a technical upgrade of the technology used in air conditioners in order to achieve a higher energy efficiency. Similarly, restrictions might be imposed, e.g. in the sourcing of equipment, use of specific technologies, etc. It will be necessary to carefully assess, in light of the overall mandate provided by the Parties, under which conditions the amount of co-financing expected is significant enough to undertake the additional effort needed to fulfil these requirements.

85. In agreeing to the HCFC guidelines, the Executive Committee has already requested information regarding national or regional funding mechanisms that might be applicable. The premise of co-financing for individual projects and plans is therefore established.

86. From an assessment of the project process, it became clear that HCFC phase-out projects would need to be developed and implemented between 2009 and 2013 to achieve the 2013 and 2015 HCFC compliance targets. The experience in the implementation of chiller projects, with an important co-financing component, suggests that significant delays in HCFC phase-out projects are likely if they are conditional upon co-financing from regional or multilateral sources, creating potentially large challenges in achieving the compliance targets in 2013 and 2015. Given the time based reduction commitments of the Montreal Protocol, it is difficult for countries to risk having their projects delayed for the uncertain prospect of co- funding. Accordingly, if the slow rate of support by other funding entities were to continue, it would call into question the possibility of using other institutions to support Multilateral Fund activities.

87. Co-financing could also be accessed globally, i.e. beyond the co-financing of individual projects or programmes. For this purpose, both market based mechanisms as well as climate or environmental funds could be used. There might be some advantages to a parallel global approach, such as simplifying procedures and centralising the effort to leverage co-financing. In

⁴⁰ Under other funding mechanisms these costs are seen as "counterpart funding" or "co-funding".

⁴¹ To allow the review of chiller projects under this funding window, the Secretariat undertook in documents ExCom/46/37, ExCom/47/20 and ExCom/47/21 an analysis of important aspects and relevant experience on co-financing that could be also valid for the mandate for this paper.

order to reduce the issue of project delay due to exploring co-financing possibilities, it would be possible for the Fund Secretariat to approach other institutions to see if clear methodologies and more streamlined mechanisms can be developed to enable the other institutions to top up Multilateral Fund ozone funding in order to achieve additional climate benefits. Exchange with other institutions could commence once discussion in the Executive Committee has progressed regarding certain issues raised in this document, in particular relating to cut-off date, second conversion and how to minimise other impacts on the environment.

- 88. Such activities might consist of the following:
 - (a) Identification of suitable and compatible regional or multilateral funding mechanisms;
 - (b) Assessment of the operational requirements associated, such as need for monitoring, requirements for additional activities or restrictions;
 - (c) Development of possible operational concepts for co-operation and necessary adjustments in project assessment, implementation, monitoring and evaluation.

89. The above points form a preliminary list, and would require close co-operation of the Secretariat and implementing agencies, under the continuous guidance and supervision by the Executive Committee. The Executive Committee might therefore wish to consider whether it wishes to further explore possibilities for co-financing.

VI. RECOMMENDATIONS

- 90. The Executive Committee might wish to:
 - (a) Take note of the discussion paper providing analysis of relevant costs considerations surrounding the financing of HCFC phase-out,
 - (b) Note the limited introduction of several of the HCFC alternative technologies available to date in Article 5 countries, the need to validate and optimize them to local conditions prevailing in Article 5 countries, and the wide variation in costs of replacement equipment and raw materials and, accordingly:
 - (i) Request the Secretariat to gather technical information related to HCFC phase-out in the aerosols, fire extinguishers and solvents on an on-going basis, to review any project in these sectors when submitted and to refer them as appropriate, for individual consideration by the Executive Committee; and
 - (ii) Consider the deferral to its first meeting in 2010 of any decision it might wish to take on policies for the calculation of incremental operating costs or savings from HCFC conversion projects, as well as the establishment of cost-effectiveness thresholds, in order to benefit from the experience gained through review of HCFC phase-out projects prior to that meeting;

- information (c) Agree that the technical contained in document UNEP/OzL.Pro/ExCom/55/47, is sufficient to enable preparation, review and submission on a case-by-case basis of a number of stand alone projects (4 per region) for HCFC phase-out in the foam, refrigeration and air conditioning sectors with the aim of demonstrating the applicability of alternative technologies and facilitating the collection of accurate data on incremental capital costs and operating costs or savings as well as other data relevant to the application of the technologies, as per paras (d) and (e) below;
- (d) Invite bilateral and implementing agencies, as a matter of urgency, to prepare and submit a limited number of time specific project proposals involving interested systems houses and/or chemical suppliers for the development, optimization and validation of chemical systems for use with non-HCFC blowing agents on the following basis:
 - As part of the projects, following the development and validation process, the collaborating systems houses would provide technology transfer and training to a selected number of downstream foam enterprises to complete the phase-out of HCFCs in these enterprises;
 - (ii) Agencies are to collect and report accurate project cost data as well as other data relevant to the application of the technologies;
 - (iii) In order to be of benefit to the preparation and implementation of the HPMPs, as well as any stand alone projects these specific projects will be completed within a period not exceeding 18 months and a progress report on each of the two implementation phases as outlined in paragraphs (i) and (ii) above, will be made available to the Executive Committee;
 - Bilateral and implementing agencies and relevant collaborating systems houses are encouraged to addresses the technological issues surrounding preparation and distribution of premixed polyols containing hydrocarbon blowing agents;
- (e) Consider inviting bilateral and implementing agencies to submit a limited number of demonstration projects for the conversion of HCFC projects in the refrigeration and air conditioning sub-sectors to low-GWP technologies to identify all the steps required and assess their associated costs;
- (f) Continue its deliberations on policy relating to second stage conversions and determination of the cut-off date for installation of HCFC-based manufacturing equipment after which incremental costs for the conversion of such equipment will not be eligible for funding, with the view to concluding its considerations prior to submission of stand-alone projects which could commence at the 56th Meeting;
- (g) Consider whether an approach of the type outlined in document UNEP/OzL.Pro/ExCom/55/47 provides a satisfactory basis for the prioritisation of HCFC phase-out technologies to minimise climate impacts as originally

envisaged in decision XIX/6, and whether it wishes the Secretariat to continue with its evaluation in order to report in a more detailed fashion at a subsequent Executive Committee meeting;

- (h) Consider the possibility for the Secretariat to approach other institutions with the objective of identifying suitable and compatible regional or multilateral funding mechanisms as sources for co-financing to top up Multilateral Fund ozone funding in order to achieve additional climate benefits and to provide a further report to a future meeting;
- (i) Consider whether it wishes to examine, at a future meeting, options for giving priority to Multilateral Fund support for equipment replacement at a time when such equipment is reaching the end of its useful life to avoid premature retirement and destruction of expensive, fully functional infrastructure once the 2013 and 2015 compliance targets have been addressed.

ANNEX I

POLICIES FOR FUNDING HCFC PHASE-OUT

1. The evaluation of the incremental costs of all Multilateral Fund project has been based on the general principles agreed by the Parties to the Montreal Protocol at their 2nd Meeting¹, namely:

- (a) The most cost-effective and efficient option should be chosen, taking into account the national industrial strategy of the recipient Party. It should be considered carefully to what extent the infrastructure at present used for production of the controlled substances could be put to alternative uses, thus resulting in decreased capital abandonment, and how to avoid deindustrialization and loss of export revenues;
- (b) Consideration of project proposals for funding should involve the careful scrutiny of cost items listed in an effort to ensure that there is no double-counting;
- (c) Savings or benefits that will be gained at both the strategic and project levels during the transition process should be taken into account on a case-by-case basis, according to criteria decided by the Parties and as elaborated in the guidelines of the Executive Committee; and
- (d) The funding of incremental costs is intended as an incentive for early adoption of ozone protecting technologies. In this respect the Executive Committee shall agree which time scales for payment of incremental costs are appropriate in each sector.

I.1 Categories of incremental costs

2. On the basis of these principles, the Executive Committee has developed specific policies and guidelines of categories of incremental costs in different industrial applications. The two main categories of incremental costs are capital costs and operating costs:

(a) Capital costs are typically related to the additional equipment that would be needed to replace ODSs with the alternative technology selected by the enterprise, technology transfer, technical assistance, training, trials and commissioning. They also include safety equipment and modifications to the enterprise when the technology selected is based on flammable substances. The size of the capital costs depends on the installed production capacity of the enterprise, the equipment available before the conversion, the alternative technology selected, and the location of the enterprise. Throughout the years, as the number of investment projects increased, the actual prices of major pieces of equipment required for the conversion were well established and used in the majority of the projects.

¹ Appendix 1 of decision II/8 (Financial Mechanism).

- (b) Incremental operating costs reflect changes in costs attributable to the conversion to CFC alternatives and arising from changes in starting materials and chemicals used in the production process such as additives, propellants and blowing agents. Fluctuations in raw material prices leading to changes in incremental operating costs occur frequently², and vary widely at the local and regional levels³. Typically enterprises respond to these changes by passing the increases to their customers in an orderly manner and as market conditions allow;
- (c) The level of incremental operating costs is associated with their duration. According to decisions adopted by the Executive Committee, the duration for the application of incremental operating costs varies among sectors and sub-sectors⁴, as follows:
 - (i) No operating costs for compressors;
 - (ii) For domestic refrigeration, ten per cent of incremental cost to be paid up-front, or six months of incremental operating costs calculated at current prices and paid up-front, or incremental operating costs for a duration of one year adjusted according to prevailing costs at the time of disbursement, when the modified plant was operating, which ever is greater;
 - (iii) Two years for commercial refrigerator, rigid and integral skin foam manufacturing plants; and
 - (iv) Four years for aerosol and flexible slabstock manufacturing plants.

I.2 Cost-effectiveness thresholds

3. In order to prioritize the approvals of investment projects, at its 16th Meeting in March 1995, the Executive Committee established cost-effectiveness threshold⁵ values for different sectors and sub-sectors, as shown in Table I.1 below. The values were established on the basis of project proposals that were fully prepared and submitted by implementing agencies, as well as proposals that were partially developed where costs and amounts of ODS to be phased out were roughly estimated.

² For example, the price of HCFC-141b dropped from US \$5.45/kg in 1993 to US \$3.40/kg in 1998, a reduction that is typical of pricing trends once a product is introduced, production is optimised, economies of scale increase and competition becomes established in the marketplace. Enterprises that received funding in 1993 when the price of HCFC-141b was at US \$5.45/kg were overcompensated for the incremental operating costs that they actually incurred (UNEP/OzL.Pro/ExCom/36/34).

³ According to the progress report on the implementation of the 2007 country programme submitted to the Fund Secretariat by Article 5 countries the 2006 price of HCFC-22 ranged from less than US \$1.00 to US \$30.00 per kilogram.

⁴ These are the sectors where HCFC technologies were chosen for phasing-out the use of CFCs in Article 5 countries.

⁵ The cost-effectiveness value is calculated as the ratio between the sum of the total incremental capital and operating costs and the total amount of ODS to be phased in kilograms ODP.

Sector	Subsector	CE (US\$/kg ODP)
Aerosol	Hydrocarbon	4.40
Foam	General	9.53
	Flexible polyurethane	6.23
	Integral skin	16.86
	Polystyrene/polyethylene	8.22
	Rigid polyurethane	7.83
Halon	General	1.48
Refrigeration	Domestic	13.76
	Commercial	15.21
Solvent	CFC-113	19.73
	TCA	38.50

Table I.1. Sectoral cost-effectiveness threshold values established by the Executive Committee

4. While adopting the threshold values, the Executive Committee recognized that the conversion from CFCs to hydrocarbon technology of domestic refrigerators manufacturing enterprises would require additional funding for the provision of safety equipment and agreed that when calculating the cost of domestic refrigeration projects the safety related costs be discounted in a way that ensures parity with other options⁶. Since the adoption of cost-effectiveness thresholds, the cost-effectiveness of projects have been assessed against the threshold value, with projects above this threshold receiving lower funding priority or partial funding.

5. The Committee also recognized the special situation of low-volume consuming (LVC) countries and decided to reserve US \$6,630,000 for allocation to projects from these countries in addition to any funds received as a result of approval of projects from LVC countries that qualified under the cost effectiveness threshold values.

I.3 Small and medium-sized enterprises (SMEs)

6. Special consideration has been given by the Executive Committee to the phase-out of ODSs by small and medium-sized enterprises SMEs since its 22nd Meeting in May 1997, when it constituted a contact group to address issues related to SMEs.

7. Subsequently, at its 25th Meeting, the Executive Committee allocated US \$10 million from the resource allocation for 1999 for a funding window designed to facilitate pilot conversions of significant groups of small firms in the aerosol and foam sectors from non-LVC countries. The maximum allowable levels of consumption per enterprise were 25 ODP tonnes/year for flexible and extruded polyethylene/polystyrene foams and 10 ODP tonnes/year for flexible integral skin and rigid polyurethane foams. It was also decided that group projects should: be at a level of US \$1 million or less; have an overall cost-effectiveness of no more than 150 per cent of the level of the current cost-effectiveness threshold values; use the most cost-

⁶ The cost effectiveness threshold value for domestic refrigeration projects was adjusted at the 20th Meeting by discounting the numerator by 35 per cent which was sufficient to maintain parity between HCFC 141b/HFC 134a and cyclopentane/HFC 134a technology options in the domestic refrigeration sector (decision 20/45).

effective technologies reasonably available; and consider the possible use of centralized use of equipment and industrial rationalization. These projects should be submitted with a Government plan including policies and regulations designed to ensure that the specific level of agreed reduction to be achieved was sustained (decision 25/56).

I.4 Policies on HCFCs

8. As HCFCs are controlled substances under the Montreal Protocol, specific decisions addressing the phase-out of these ODSs have been taken by the Parties since their 5th Meeting in November 1993, and the Executive Committee since its 12th Meeting in March 1994. As reference, all relevant decisions adopted by the Parties to the Montreal Protocol and the Executive Committee regarding HCFCs are presented below in chronological order of adoption.

Fifth Meeting of the Parties (November 1993)

9. The Fifth Meeting of the Parties decided (decision V/8) that each Party is requested, as far as possible and as appropriate, to give consideration in selecting alternatives and substitutes, bearing in mind, *inter alia*, Article 2F, paragraph 7, of the Copenhagen Amendment regarding hydrochlorofluorocarbons, to:

- (a) Environmental aspects;
- (b) Human health and safety aspects;
- (c) The technical feasibility, the commercial availability and performance;
- (d) Economic aspects, including cost comparisons among different technology options taking into account:
 - (i) All interim steps leading to final ODS elimination;
 - (ii) Social costs;
 - (iii) Dislocation costs; and
- (e) Country-specific circumstances and due local expertise.

Twelfth Meeting of the Executive Committee (March 1994)

10. The Twelfth Meeting of the Executive Committee adopted the following recommendations on the use of transitional substances as substitutes for ozone depleting substances:

(a) In view of the ongoing review requested of the Technology and Economic Assessment Panel by the Parties to the Montreal Protocol, the paper on The Use of Transitional Substances as Substitutes for Ozone Depleting Substances (UNEP/OzL.Pro/ExCom/12/34) may not be considered as a policy guideline but as a possible input to the work of the Open-ended Working Group of the Parties to the Montreal Protocol.

(b) Meanwhile, consideration of the use of HCFC in the Multilateral Fund projects should be sector-specific and approved for use only in areas where more environment-friendly and viable alternative technologies are not available.

Fifteenth Meeting of the Executive Committee (December 1994)

11. The Fifteenth Meeting of the Executive Committee stated that, whenever possible, HCFCs should not be used. It further requested that the applicability of HCFCs in commercial refrigeration projects should be examined by an expert group, possibly the OORG, which should prepare a report for submission to the Executive Committee.

12. The Executive Committee also requested Implementing Agencies to take the following issue into consideration when preparing projects for domestic refrigerator insulation foam conversion:

- (a) As HCFCs were not controlled substances for Article 5 countries, incremental costs for conversion of HCFC-141b plants were not eligible for funding;
- (b) Implementing Agencies should note a presumption against HCFCs when preparing projects; and
- (c) Where HCFC projects were proposed, the choice of this technology should be fully justified and include an estimate of the potential future costs of second-stage conversion.

Nineteenth Meeting of the Executive Committee (May 1996)

13. The Executive Committee, noting the recommendation of the Sub-Committee (UNEP/OzL.Pro/ExCom/19/5, para. 12), decided (decision 19/2):

- (a) To take note of decision VII/3 of the Seventh Meeting of the Parties to control HCFCs and to note further that projects involving conversion to HCFCs should be considered in the light of that decision, as well as other relevant factors;
- (b) That in the future, in cases where conversion to HCFCs was recommended, the Implementing Agencies should be requested to provide a full explanation of the reasons why such conversion was recommended, together with supporting documentation that the criteria laid down by the Executive Committee for transitional substances had been met, and should make it clear that the enterprises concerned had agreed to bear the cost of subsequent conversion to non-HCFC substances; and
- (c) To request the Secretariat to prepare for examination by the Executive Committee at its Twentieth Meeting a paper on:

- (i) The historical background to HCFC conversion projects;
- (ii) What information on alternatives to HCFCs had been provided by the Implementing Agencies to the applicant countries, and how that information had been received and acted upon; and
- (iii) The justifications given for the choice of one technology over another.

Twentieth Meeting of the Executive Committee (October 1996)

- 14. The Twentieth Meeting of the Executive Committee, decided (decision 20/48 (b, c)):
 - (a) To request the Implementing Agencies to ensure that adequate information on all alternative technologies was provided to enterprises converting from CFCs;
 - (b) To reaffirm paragraph (b) of its decision 19/2 which stated that, in cases where conversion to HCFCs was recommended, the Implementing Agencies should be requested to provide a full explanation of the reasons why such conversion was recommended, together with supporting documentation that the criteria laid down by the Executive Committee for transitional substances had been met, and should make it clear that the enterprises concerned had agreed to bear the cost of subsequent conversion to non-HCFC substances.

Eighth Meeting of the Parties (November 1996)

- 15. The Eighth Meeting of the Parties decided (decision VIII/13):
 - (a) That UNEP distribute to the Parties of the Montreal Protocol a list containing the HCFCs applications which have been identified by the Technology and Economic Assessment Panel, after having taken into account the following:
 - (i) The heading should read "Possible Applications of HCFCs";
 - (ii) The list should include a chapeau stating that the list is intended to facilitate collection of data on HCFC consumption, and does not imply that HCFCs are needed for the listed applications;
 - (iii) The use as fire extinguishers should be added to the list;
 - (iv) The use as aerosols, as propellant, solvent or main component, should be included, following the same structure as for other applications;
 - (b) That the Technology and Economic Assessment Panel and its Technical Options Committee be requested to prepare, for the Ninth Meeting of the Parties, a list of available alternatives to each of the HCFC applications which are mentioned in the now available list.

Twenty-third Meeting of the Executive Committee (November 1997)

- 16. The Twenty-third Meeting of the Executive Committee decided (decision 23/2):
 - (a) To request the Fund Secretariat to produce a paper containing figures on an analysis of what projects were being submitted for funding using HCFC technologies, to see whether there existed any trend towards or away from HCFC use in specific sectors, particularly the foam sector;
 - (b) To request the Secretariat to incorporate the following elements in the project evaluation sheets and, in the case of (i) below, in the list of projects and activities presented to the Committee for approval:
 - (i) Information on the conversion technology to be used;
 - (ii) A comprehensive outline of the reasons for selection of the HCFC technology, if used; and, where possible,
 - (iii) An indication of how long an enterprise intended to use a transitional HCFC technology.

Twenty-sixth Meeting of the Executive Committee (November 1998)

- 17. The Twenty-sixth Meeting of the Executive Committee decided (decision 26/26):
 - (a) That the full information provided in the project document should be included in the project evaluation sheet;
 - (b) That where, upon review by the Fund Secretariat, a project proposal requesting HCFC technology was considered to provide inadequate information justifying the choice of that technology, the project should be submitted for individual consideration by the Sub-Committee on Project Review.

Twenty-seventh Meeting of the Executive Committee(March 1999)

18. The Executive Committee at its Twenty-seventh Meeting (decision 27/13) expressed its appreciation for the increased information/justification provided for the selection of HCFCs and noted that that was the level of information originally expected, and that at least that level was expected in the future; stressed to the Implementing Agencies that it considered this to be more than a paper exercise, and urged the Agencies to take seriously the obligations related to providing information on alternatives available; and decided, in recognition of Article 2F of the Montreal Protocol, to request that Implementing Agencies provide, for all future projects or groups of projects for HCFCs from any country, a letter from the Government concerned. In the letter, the country should:

(a) Verify that it had reviewed the specific situations involved with the project(s) as well as its HCFC commitments under Article 2F;

UNEP/OzL.Pro/ExCom/55/47 Annex I

- (b) State if it had nonetheless determined that, at the present time, the projects needed to use HCFCs for an interim period;
- (c) State that it understood that no funding would be available for the future conversion from HCFCs for these companies.

Twenty-eighth Meeting of the Executive Committee (July 1999)

19. The Twenty-eighth Meeting of the Executive Committee decided (decision 28/28) that information on a possible study comparing costs of alternative technologies and the impact on their choice of support from the Multilateral Fund should be the subject of a separate agenda item for its Twenty-ninth Meeting, for consideration by the Executive Committee itself.

Eleventh Meeting of the Parties (December 1999)

20. The Eleventh Meeting of the Parties decided (decision XI/28) to request the Technology and Economic Assessment Panel to study and report by 30 April 2003 at the latest on the problems and options of Article 5 Parties in obtaining HCFCs in the light of the freeze on the production of HCFCs in non-Article 5 Parties in the year 2004. This report should analyze whether HCFCs are available to Article 5 Parties in sufficient quantity and quality and at affordable prices, taking into account the 15 per cent allowance to meet the basic domestic needs of the Article 5 Parties. The Parties, at their Fifteenth Meeting in the year 2003, shall consider this report for the purpose of addressing problems, if any, brought out by the report of the Technology and Economic Assessment Panel.

Thirtieth Meeting of the Executive Committee (March 2000)

21. The Thirtieth Meeting of the Executive Committee decided (decision 30/1) to establish an open-ended contact group, with Sweden as convener, in order to consider the question of policy on HCFC use as an interim technology and that the outcome of the group's work would be discussed under "Other matters".

Thirty-fourth Meeting of the Executive Committee (July 2001)

22. The Thirty-fourth Meeting of the Executive Committee decided (decision 34/51) to request the Secretariat, in relation to all future projects which involved conversion to HCFC-141b, to include in the meeting documentation the letter from the Government concerned, explaining the reasons for the choice of the technology, as per Decisions 23/20 and 27/13.

Thirty-sixth Meeting of the Executive Committee (March 2002)

- 23. The Thirty-sixth Meeting of the Executive Committee decided (decision 36/56):
 - (a) To take note with appreciation of the paper submitted by France;
 - (b) To request the Multilateral Fund Secretariat to update document

UNEP/OzL.Pro/ExCom/36/34 with new costs for various options and to investigate the availability of non-ODS pre-blended polyol, and to submit the updated document and its findings for the consideration of the 39th Meeting;

- (c) To request Implementing Agencies to amplify the relevant enterprise information pursuant to Decision 20/48 with data concerning import restrictions into non-Article 5 countries and the cost situation for alternatives, and to inform the enterprises that they should acknowledge having received that information. The corresponding documentation should accompany the project proposal;
- (d) To request the Secretariat to send to the National Ozone Unit of the recipient country, a letter recalling that HCFC-141b projects would be excluded from funding in the future (no second conversion), with copies to the Ministries of the Environment and Foreign Affairs;
- (e) That the annual Executive Committee report to the Meeting of the Parties should state by country the amount of HCFC-141b consumption phased in through projects using HCFC as replacements, a consumption which would in application of Decision 27/13 be excluded from funding at future stages.

Thirty-eighth Meeting of the Executive Committee (November 2002)

24. The Thirty-eighth Meeting of the Executive Committee decided (decision 38/38) for projects to phase-out CFCs by conversion to HCFC technologies, Governments had officially endorsed the choice of technology and it had been clearly explained to them that no further resources could be requested from the Multilateral Fund for funding any future replacement for the transitional HCFC technology that had been selected.

Fourteenth Meeting of the Parties (November 2002)

25. The Fourteenth Meeting of the Parties (decision XIV/10), noting that the Intergovernmental Panel on Climate Change and the Technology and Economic Assessment Panel are invited by the Convention on Climate Change to develop a balanced scientific, technical and policy-relevant special report as outlined in their responses to a request by the Subsidiary Body for Scientific and Technological Advice of the Convention on Climate Change (UNFCCC/SBSTA/2002/MISC.23), decided to request the Technology and Economic Assessment Panel to work with the Intergovernmental Panel on Climate Change in preparing the report mentioned above and to address all areas in one single integrated report to be finalized by early 2005. The report should be completed in time to be submitted to the Open-ended Working Group for consideration in so far as it relates to actions to address ozone depletion and the Subsidiary Body for Scientific and Technological Advice of the Convention on Climate Change is simultaneously.

Fifteenth Meeting of the Parties (November 2003)

- 26. The Fifteenth Meeting of the Parties decided:
 - (a) That the Parties to the Beijing Amendment will determine their obligations to ban the import and export of controlled substances in group I of Annex C (hydrochlorofluorocarbons) with respect to States and regional economic organizations that are not parties to the Beijing Amendment by January 1 2004 in accordance with the following:
 - (i) The term "State not party to this Protocol" in Article 4, paragraph 9 does not apply to those States operating under Article 5, paragraph 1, of the Protocol until January 1, 2016 when, in accordance with the Copenhagen and Beijing Amendments, hydrochlorofluorocarbon production and consumption control measures will be in effect for States that operate under Article 5, paragraph 1, of the Protocol;
 - (ii) The term "State not party to this Protocol" includes all other States and regional economic integration organizations that have not agreed to be bound by the Copenhagen and Beijing Amendments;
 - (iii) Recognizing, however, the practical difficulties imposed by the timing associated with the adoption of the foregoing interpretation of the term "State not party to this Protocol," paragraph 1 (b) shall apply unless such a State has by 31 March 2004:
 - (i) notified the Secretariat that it intends to ratify, accede or accept the Beijing Amendment as soon as possible;
 - (ii) certified that it is in full compliance with Articles 2, 2A to 2G and Article 4 of the Protocol, as amended by the Copenhagen Amendment;
 - (iii) submitted data on (i) and (ii) above to the Secretariat, to be updated on 31 March 2005, in which case that State shall fall outside the definition of "State not party to this Protocol" until the conclusion of the Seventeenth Meeting of the Parties;
 - (b) That the Secretariat shall transmit data received under paragraph 1 (c) above to the Implementation Committee and the Parties;
 - (c) That the Parties shall consider the implementation and operation of the foregoing decision at the Sixteenth Meeting of the Parties, in particular taking into account any comments on the data submitted by States by 31 March 2004 under paragraph 1 (c) above that the Implementation Committee may make.

Forty-second Meeting of the Executive Committee (April 2004)

27. The Forty-second Meeting of the Executive Committee decided (decision 42/7):

- (a) To request the Government of Germany to take into account the views expressed on the eligibility of funding HCFC phase-out management studies by the Multilateral Fund at the 42nd Meeting of the Executive Committee, in the informal group meeting and, in addition, further submissions of additional ideas and opinions sent by e-mail to GTZ-Proklima, as the German bilateral Implementing Agency, provided that they were received 10 weeks prior to the 43rd Meeting of the Executive Committee; and
- (b) Also to request the Government of Germany to circulate to the Executive Committee, through the United Kingdom delegation, a policy paper on the issues of the responsibility of the Multilateral Fund and potential eligibility requirements for such a study and to reformulate the project proposal for submission and consideration at the 43rd Meeting of the Executive Committee on that basis.

Forty-third Meeting of the Executive Committee (July 2004)

- 28. The Forty-third Meeting of the Executive Committee decided (decision 43/19):
 - (a) To note that:
 - The May 2003 Technology and Economic Assessment Panel's HCFC Task Force Report predicted a dramatic increase in HCFC consumption in China in the foreseeable future;
 - (ii) The intent of the proposed project was also to allow utilization of its results for all Article 5 countries; and
 - (iii) Established Executive Committee policies did not support conversion of capacity installed after July 1995 nor a second conversion and the study was therefore not aiming at preparing or initiating any conversion projects;
 - (b) To approve the project "Development of a suitable strategy for the long-term management of HCFCs, in particular HCFC-22, in China", addressed in documents UNEP/Ozl.Pro/ExCom/43/21 and UNEP/OzL.Pro/ExCom/43/51, at the level of funding of US \$300,300 plus support costs for the Government of Germany of US \$39,039 on an exceptional basis on the condition that, as one of the outcomes, a study would look into the effects of management of HCFCs in China and in other Article 5 countries; and
 - (c) To further note that:
 - (i) A schedule for the study, indicating a project duration of 21 months, had been submitted to the Fund Secretariat. Both the Government of Germany and the Government of China would strive to adhere to that schedule;
 - (ii) The Government of China intended to use relevant outcomes of the study as a basis for subsequent national action by the Government and expected that such action would take place within three years after finalization of

the study; and

(iii) Interested Executive Committee members and Implementing Agencies would be invited to participate in an informal advisory group, which might discuss survey methodologies, the evaluation of information gathered, and policies.

Nineteenth Meeting of the Parties (September 2007)

29. The Nineteenth Meeting of the Parties agree (decision XIX/6) to accelerate the phase out of production and consumption of hydrochlorofluorocarbons (HCFCs), by way of an adjustment in accordance with paragraph 9 of Article 2 of the Montreal Protocol and as contained in annex III to the report of the Nineteenth Meeting of the Parties, on the basis of the following:

- (a) For Parties operating under paragraph 1 of Article 5 of the Protocol (Article 5 Parties), to choose as the baseline the average of the 2009 and 2010 levels of, respectively, consumption and production; and
- (b) To freeze, at that baseline level, consumption and production in 2013;
 - (i) For Parties operating under Article 2 of the Protocol (Article 2 Parties) to have completed the accelerated phase out of production and consumption in 2020, on the basis of the following reduction steps:
 - (ii) By 2010 of 75 per cent;
 - (iii) By 2015 of 90 per cent;
 - (iv) While allowing 0.5 per cent for servicing the period 2020–2030;
- (c) For Article 5 Parties to have completed the accelerated phase out of production and consumption in 2030, on the basis of the following reduction steps:
 - (i) By 2015 of 10 per cent;
 - (ii) By 2020 of 35 per cent;
 - (iii) By 2025 of 67.5 per cent;
 - (iv) While allowing for servicing an annual average of 2.5per cent during the period 2030–2040;
- (d) To agree that the funding available through the Multilateral Fund for the Implementation of the Montreal Protocol in the upcoming replenishments shall be stable and sufficient to meet all agreed incremental costs to enable Article 5 Parties to comply with the accelerated phase out schedule both for production and consumption sectors as set out above, and based on that understanding, to also direct the Executive Committee of the Multilateral Fund to make the necessary

changes to the eligibility criteria related to the post-1995 facilities and second conversions;

- (e) To direct the Executive Committee, in providing technical and financial assistance, to pay particular attention to Article 5 Parties with low volume and very low volume consumption of HCFCs;
- (f) To direct the Executive Committee to assist Parties in preparing their phase-out management plans for an accelerated HCFC phase-out;
- (g) To direct the Executive Committee, as a matter of priority, to assist Article 5 Parties in conducting surveys to improve reliability in establishing their baseline data on HCFCs;
- (h) To encourage Parties to promote the selection of alternatives to HCFCs that minimize environmental impacts, in particular impacts on climate, as well as meeting other health, safety and economic considerations;
- (i) To request Parties to report regularly on their implementation of paragraph 7 of Article 2F of the Protocol;
- (j) To agree that the Executive Committee, when developing and applying funding criteria for projects and programmes, and taking into account paragraph 6, give priority to cost-effective projects and programmes which focus on, inter alia:
 - (i) Phasing-out first those HCFCs with higher ozone-depleting potential, taking into account national circumstances;
 - (ii) Substitutes and alternatives that minimize other impacts on the environment, including on the climate, taking into account global-warming potential, energy use and other relevant factors;
 - (iii) Small and medium size enterprises;
- (k) To agree to address the possibilities or need for essential use exemptions, no later than 2015 where this relates to Article 2 Parties, and no later than 2020 where this relates to Article 5 Parties;
- (1) To agree to review in 2015 the need for the 0.5 per cent for servicing provided for in paragraph 3, and to review in 2025 the need for the annual average of 2.5 per cent for servicing provided for in paragraph 4 (d);
- (m) In order to satisfy basic domestic needs, to agree to allow for up to 10% of baseline levels until 2020, and, for the period after that, to consider no later than 2015 further reductions of production for basic domestic needs;
- (n) In accelerating the HCFC phase out, to agree that Parties are to take every practicable step consistent with Multilateral Fund programmes, to ensure that the

best available and environmentally-safe substitutes and related technologies are transferred from Article 2 Parties to Article 5 Parties under fair and most favourable conditions.

- 30. The Nineteenth Meeting of the Parties also decided (decision XIX/8):
 - (a) To request the Technology and Economic Assessment Panel to conduct a scoping study addressing the prospects for the promotion and acceptance of alternatives to HCFCs in the refrigeration and air-conditioning sectors in Article 5 Parties, with specific reference to specific climatic conditions and unique operating conditions, such as those as in mines that are not open pit mines, in some Article 5 Parties;
 - (b) To request the Technology and Economic Assessment Panel to provide a summary of the outcome of the study referred to in the preceding paragraph in its 2008 progress report with a view to identifying areas requiring more detailed study of the alternatives available and their applicability.

Fifty-third Meeting of the Executive Committee (November 2007)

- 31. The Fifty-third Meeting of the Executive Committee decided (decision 53/37):
 - (a) That ratification of or accession to the Copenhagen Amendment was the prerequisite for an Article 5 Party to access Multilateral Fund funding for phasing out the consumption of HCFCs;
 - (b) That ratification of or accession to the Beijing Amendment was the prerequisite for an Article 5 Party to access Multilateral Fund funding for phasing out the production of HCFCs;
 - (c) That, in the case of a non-signatory country, the Executive Committee might consider providing funding for conducting an HCFC survey and the preparation of an accelerated HCFC phase-out management plan, with the commitment of the government to ratify or accede to the necessary Amendment and on the understanding that no further funding would be available until the Ozone Secretariat had confirmed that the government had ratified or acceded to that Amendment, through the deposit of its instrument in the Office of the United Nations Headquarters in New York;
 - (d) That the existing policies and guidelines of the Multilateral Fund for funding the phase-out of ODS other than HCFCs would be applicable to the funding of HCFC phase-out unless otherwise decided by the Executive Committee in light of, in particular, decision XIX/6 of the Nineteenth Meeting of the Parties;
 - (e) That institutions and capacities in Article 5 countries developed through Multilateral Fund assistance for the phase-out of ODS other than HCFCs should be used to economize the phase-out of HCFCs, as appropriate;

- (f) That stable and sufficient assistance from the Multilateral Fund would be provided to guarantee the sustainability of such institutions and capacities when deemed necessary for the phase-out of HCFCs;
- (g) That the production sector sub-group would be reconvened at the 55th Meeting to consider issues pertaining to the phase-out of HCFC production, taking into account decision XIX/6 of the Nineteenth Meeting of the Parties and the following issues, as well as further elaboration and analysis of those issues to be prepared by the Secretariat in consultation with technical experts:
 - (i) The continued applicability of the current approach to funding HCFC production phase-out being based on the assumption of plant closures;
 - (ii) The timing of funding HCFC production phase-out in view of the long duration between the HCFC freeze in 2013 and the final phase-out in 2030, taking into consideration that production and consumption phase-out could take place simultaneously;
 - (iii) The eligibility of the CFC/HCFC-22 swing plants in view of the commitment in the CFC production phase-out agreement not to seek funding again from the Multilateral Fund for closing down HCFC facilities that use the existing CFC infrastructure;
 - (iv) The cut-off date for funding eligibility of HCFC production phase-out;
 - (v) Other measures that could facilitate management of HCFC production phase-out; and
 - (vi) Other issues related to the HCFC production sector, taking in account subparagraph (g)(ii) above.
- (h) That the Secretariat would work with the implementing agencies to examine the existing guidelines for country programmes and sector plans (decision taken at the 3rd Meeting of the Executive Committee and decision 38/65), and propose draft guidelines to the 54th Meeting for the preparation of HCFC phase-out management plans incorporating HCFC surveys, taking into consideration comments and views relating to such guidelines expressed by Executive Committee members at the 53rd Meeting and the submissions to the 54th Meeting referred to in paragraph (l) below, and that the Executive Committee would do its utmost to approve the guidelines at its 54th Meeting;
- (i) That the Secretariat, in consultation with technical experts with knowledge of experiences in Article 5 countries with different levels of development and non-Article 5 countries, would prepare by 25 March 2008 a preliminary discussion document providing analysis on all relevant cost considerations surrounding the financing of HCFC phase-out, taking into account the views expressed by Executive Committee Members in the submissions referred to in paragraph (l) below, and including:

- (i) Information on the cost benchmarks/ranges and applicability of HCFC substitute technologies; and
- (ii) Consideration of substitute technologies, financial incentives and opportunities for co-financing which could be relevant for ensuring that the HCFC phase-out resulted in benefits in accordance with paragraph 11(b) of decision XIX/6 of the Nineteenth Meeting of the Parties;
- (j) That the current classifications of low-volume-consuming (LVC) countries and small and medium-sized enterprises (SMEs) should be maintained until the cost-effectiveness thresholds of HCFC phase-out had been developed and the potential impact of those thresholds on LVC countries and SMEs had become better known. It would then be possible to review those classifications including a classification for very low-volume consuming countries, and current policies and funding arrangements targeting those countries and enterprises;
- (k) To note that the following cut-off dates for funding HCFC phase-out had been proposed:
 - (i) 2000 (Cap of HCFC production/consumption in one major country);
 - (ii) 2003 (Clean Development Mechanism);
 - (iii) 2005 (proposal for accelerated phase-out of HCFCs);
 - (iv) 2007 (Nineteenth Meeting of the Parties);
 - (v) 2010 (end of the baseline for HCFCs);
 - (vi) Availability of substitutes;
- (1) As a matter of priority, and taking into account paragraphs 5 and 8 of decision XIX/6 of the Nineteenth Meeting of the Parties, to invite Executive Committee Members to submit their views on the following issues to the Secretariat, by 15 January 2008, with the understanding that the Secretariat would make the submissions available to the 54th Meeting:
 - (i) Elements the Secretariat should consider in the draft guidelines for the preparation of national HCFC phase-out management plans;
 - (ii) Cost considerations to be taken into account by the Secretariat in preparing the discussion document referred to in paragraph (i) above;
 - (iii) Cut-off date for funding eligibility; and
 - (iv) Second-stage conversions;

(m) To approve 2008 expenditure of up to US \$150,000 to cover the costs of consultations with technical experts and other stakeholders required for the preparation of the documents referred to in the present decision.

Fifty-fourth Meeting of the Executive Committee (April 2008)

32. The fifty-fourth Executive Committee decided to adopt the following guidelines (decision 54/39):

- (a) Countries should adopt a staged approach to the implementation of an HCFC phase-out management plan (HPMP), within the framework of their over-arching-strategy;
- (b) As soon as possible and depending on the availability of resources, countries should employ the guidelines herein to develop, in detail, stage one of the HPMPs, which would address how countries would meet the freeze in 2013 and the 10 per cent reduction in 2015, with an estimate of related cost considerations and applying cost guidelines as they were developed;
- (c) The elaboration of stage one of the HPMP and subsequent stages should be developed as follows:
 - (i) For countries with consumption in the servicing sector only:
 - a) To be consistent with existing guidelines for the preparation of RMPs/RMP updates pursuant to decisions 31/48 and 35/57; and, if applicable, with the preparation of TPMPs pursuant to decision 45/54;
 - b) To contain commitments to achieve the 2013 and 2015 HCFC control measures and include a performance-based system for HPMPs based on the completion of activities in the HPMP to enable the annual release of funding for the HPMP;
 - (ii) For countries with manufacturing sectors using HCFCs, HPMPs should contain a national performance-based phase-out plan (NPP) with one or several substance or sector-based phase-out plans (SPP) consistent with decision 38/65 addressing consumption reduction levels sufficient to achieve the 2013 and 2015 HCFC control measures and provide starting points for aggregate reductions, together with annual reduction targets;
- (d) For countries that chose to implement investment projects in advance of completion of the HPMP:
 - (i) The approval of each project should result in a phase-out of HCFCs to count against the consumption identified in the HPMP and no such projects could be approved after 2010 unless they were part of the HPMP;

- (ii) If the individual project approach was used, the submission of the first project should provide an indication of how the demonstration projects related to the HPMP and an indication of when the HPMP would be submitted;
- (e) Consideration should be given to providing funding for assistance to include HCFC control measures in legislation, regulations and licensing systems as part of the funding of HPMP preparation as necessary and confirmation of the implementation of the same should be required as a prerequisite for funding implementation of the HPMP;
- (f) In cases where there were multiple implementing agencies in one country, a lead agency should be designated to coordinate the overall development of stage one of the HPMP;
- (g) HPMPs should contain cost information at the time of their submission based on and addressing:
 - (i) The most current HCFC cost guidelines at the time of submission;
 - (ii) Alternative cost scenarios based on different potential cut-off dates for new capacity if a specific cut-off date had not yet been decided, for funding eligibility of manufacturing facilities as specified in decision 53/37(k), as well as the current policy for a 25 July 1995 cut-off date;
 - (iii) Alternative cost scenarios for the operational and capital costs for second conversions;
 - (iv) The incremental costs of regulating import and supply to the market of HCFC dependent equipment once proven alternatives were commercially available in the country and describing the benefits to the servicing sector of associated reduced demand;
 - (v) Cost and benefit information based on the full range of alternatives considered, and associated ODP and other impacts on the environment including on the climate, taking into account global-warming potential, energy use and other relevant factors;
- (h) Countries and agencies were encouraged to explore potential financial incentives and opportunities for additional resources to maximize the environmental benefits from HPMPs pursuant to paragraph 11(b) of decision XIX/6 of the Nineteenth Meeting of the Parties;
- (i) HPMPs should address:
 - (i) The use of institutional arrangements mentioned in decision 53/37(e) and (f);

- (ii) The roles and responsibilities of associations of refrigeration technicians and other industry associations and how they could contribute to HCFC phase-out; and
- (j) HPMPs should, as a minimum, fulfil the data and information requirements, as applicable, listed in the indicative outline for the development of HPMPs, as set out in Annex XIX to the present report.

19

ANNEX II

OVERVIEW OF HCFCS USES

1. HCFCs have been used as early as 1936 when HCFC-22 was commercialized as a refrigerant. Production and consumption levels of HCFCs were substantially increased as a result of new applications particularly in the air conditioning sector as well as the Montreal Protocol, since several countries selected these substances as interim replacements of CFCs and other controlled substances.

2. As a consequence, global production of HCFCs reached 37,749 ODP tonnes (549,941 metric tonnes) in 2000 while the global consumption reached 38,219 ODP tonnes (546,996 metric tonnes) in the same year of which Article 5 countries accounted for 23 per cent. Since then, HCFC production and consumption levels have been reduced worldwide as a result of their phase-out in non-Article 5 countries.

3. However, against the global reduction trend, a substantial growth in HCFC production and consumption occurred in Article 5 countries¹ resulting in this group of countries accounting for nearly 80 per cent of the global production and over 75 per cent of the global consumption, as shown in Table II.1 below:

	2000	2001	2002	2003	2004	2005	2006
HCFC production							
In ODP tonnes:							
Non-Article 5 countries	29,981	26,176	25,271	17,095	14,180	11,863	7,075
Article 5 countries	7,768	8,460	10,482	13,629	17,589	20,543	27,003
Total ODP tonnes production	37,749	34,635	35,753	30,724	31,769	32,406	34,078
In metric tonnes:							
Non-Article 5 countries	420,785	359,889	335,577	254,287	221,251	205,779	118,044
Article 5 countries	129,156	140,358	165,778	211,580	276,476	326,518	413,659
Total metric tonnes production	549,941	500,247	501,355	465,867	497,727	532,297	531,703
HCFC consumption							
In ODP tonnes:							
Non-Article 5 countries	25,219	23,360	22,333	14,865	10,975	10,278	7,120
Article 5 countries	13,000	12,435	13,403	15,826	19,783	21,536	28,040
Total ODP tonnes consumption	38,219	35,795	35,736	30,691	30,758	31,814	35,160
In metric tonnes:							
Non-Article 5 countries	347,741	321,823	291,318	225,013	185,019	182,326	122,107
Article 5 countries	199,255	191,854	201,023	230,354	287,407	329,104	396,099
Total metric tonnes consumption	546,996	513,677	492,341	455,367	472,426	511,430	518,206

Table II.1 Levels of production and consumption of HCFCs (*)

(*) Data reported under Article 7 of the Montreal Protocol

¹ This category includes data from the Republic of Korea, Singapore and United Arab Emirates, representing countries that have so far not received assistance from the Multilateral Fund.

II.1 HCFCs consumption in Article 5 countries

4. Based on an analysis of HCFC data reported by Article 5 countries under Article 7 of the Montreal Protocol, it was noted that:

- (a) HCFC-141b, HCFC-142b and HCFC-22 accounted for more than 99 per cent of the total amounts of HCFCs that were produced or consumed in 2006;
- (b) Consumption of HCFC-22 represented 48.5 per cent of the total consumption of HCFCs in 2006, while consumption of HCFC-141b and HCFC-142b represented 43.5 and 7.2 per cent respectively of the total HCFC consumption;
- (c) Seventy one countries reported a total HCFC consumption below 360 ODP tonnes in 2006 while 29 other countries either report zero consumption or not reported consumption (27 of these countries are currently classified as LVC countries);
- (d) HCFC-142b increased significantly from 106.5 ODP tonnes (1,639 metric tonnes) in 2000 to 2,029.9 ODP tonnes (31,229 metric tonnes) in 2006. Consumption of HCFC-141b increased by 19 per cent while consumption of HCFC-22 increased by 8 per cent over the same period;
- (e) In 2006, the total production and consumption of HCFCs by Republic of Korea, Singapore and United Arab Emirates amounted to 146.5 ODP tonnes (6,764 metric tonnes) and 1,016.2 ODP tonnes (33,372 metric tonnes) respectively. These three Article 5 countries have not received any assistance from the Multilateral Fund for phasing out their production and consumption of ODSs;
- (f) For the purpose of comparison, the total consumption of CFCs reported by all Article 5 countries under Article 7 excluding Republic of Korea, Singapore and United Arab Emirates, amounted to 178,144 metric tonnes in 1995, which represented the maximum amount ever reported. The total 2006 consumption of HCFCs in metric tonnes is more than two times the CFC consumption reported in 1995.

5. Consumption of HCFC-141b and HCFC-142b was reported only in 40 and 19 Article 5 countries² respectively in 2006. Twenty³ of the 40 countries reported consumption of HCFC-141b consumption below 10 ODP tonnes (91 metric tonnes). Similarly, 16^4 of 19 countries reported consumption of HCFC-142b below 10 ODP tonnes (154 metric tonnes). Thus, virtually three countries accounted for the entire HCFC-142b consumption of Article 5 countries in 2006. These levels of HCFC consumption point to a large number of SMEs among Article 5 countries with respect to HCFCs.

² Excluding Republic of Korea, Singapore and United Arab Emirates.

³ Excluding 1,028.7 ODP tonnes (9,352 metric tonnes) consumed by Republic of Korea, Singapore and United Arab Emirates.

⁴ Excluding 126.7 ODP tonnes (1,949 metric tonnes) consumed by Republic of Korea and Singapore.

6. Seventy⁵ of the 114 Article 5 countries that reported consumption of HCFC- 22^{6} in 2006 had consumption below 10 ODP tonnes (182 metric tonnes). It appears that the consumption of HCFC-22 in these countries is mainly for servicing refrigeration systems.

7. The number of countries by level of consumption and type of HCFC is presented in Table II.2 below.

HCFC	<10	>10 and <50	>50 <100	>100 < 1,000	>1,000	Total
HCFC-141b**	22	8	6	3	1	40
HCFC-142b**	17		1		1	19
HCFC-22(*)	73	20	7	13	1	114

(*) An additional 16 countries had reported HCFC-22 consumption in 2005.

II.3 Sectoral distribution of HCFCs

8. The only information on the sectoral uses of HCFCs in Article 5 countries available at the Fund Secretariat was that contained in the preliminary surveys on HCFCs undertaken by the Government of Germany for China⁷ and UNDP for 12 selected Article 5 countries⁸. Some of the results of these surveys were the following:

- (a) Excluding HCFC feedstock consumption, about 4,950 ODP tonnes of HCFC-22 were used in China in 2004 as refrigerant and 550 ODP tonnes as foaming agent and in the aerosol sector. The largest share of HCFC-22 consumption in China is for room air-conditioners, with a total production of 67.6 million units in 2005. During the next ten years, the use of HCFC-22 is likely to increase to about 16,500 ODP tonnes for domestic consumption, unless constrained by policy and technology improvements;
- (b) The room air-conditioner and the expanded polystyrene foam sub-sectors in China are expected to grow at an annual rate of 7 per cent and 9 per cent, respectively;
- (c) According to the surveys conducted by UNDP, the two main industrial sectors where HCFCs are currently consumed in Article 5 countries are the foam sector (32.5 per cent of the total consumption) and the refrigeration sector (66.2 per cent). The remaining consumption is in the aerosol (0.2 per cent), fire extinguisher (0.1 per cent) and solvent (1.0 per cent) sectors; and
- (d) The breakdown of HCFC use by manufacturing versus servicing sectors in countries covered by UNDP's surveys are country dependent as shown below:

⁷ UNEP/OzL.Pro/ExCom/51/Inf. 3.

⁵ Excluding 1,213.9 ODP tonnes (22,071 metric tonnes) consumed by Republic of Korea, Singapore and United Arab Emirates.

⁶ An additional 16 countries Article 5 countries had reported HCFC-22 consumption in 2005. Republic of Korea, Singapore and United Arab Emirates are excluded from the analysis.

⁸ UNEP/OzL.Pro/ExCom/51/Inf. 2.

Country	Manufacturing (%)	Servicing (%)
Argentina	38.0	59.0
Brazil	45.0	52.0
Colombia	59.0	31.0
India	79.0	20.0
Indonesia	56.0	44.0
Iran	83.0	17.0
Lebanon	31.0	69.0
Mexico	64.0	35.0
Venezuela	21.0	77.0

II.4 HCFC technology in Multilateral Fund projects

9. Since the inception of the Multilateral Fund in 1991, the Executive Committee has approved 858 stand-alone investment projects in 47 Article 5 countries where HCFCs have been selected as the technology to replace CFC consumption, partially or totally⁹. Additionally, sectoral phase-out plans in the foam and refrigeration sectors and the conversion of CFC-12 compressors to HCFC-22-based systems have also been approved by the Executive Committee in a few Article 5 countries. The sectoral distribution of the stand-alone projects is presented in Table II.3 below:

Table II.3 Sectoral distribution of Multilateral Fund stand-alone projects with HCFC replacement technology

Sector	Projects	Countries
Foam	491	31
Refrigeration(*)	364	44
Solvent	3	2
Total	858	

(*) Compressor projects converted to HCFC-22 technology are not included.

10. Over 40,000 ODP tonnes of CFCs have been replaced by HCFC technologies, mainly HCFC-141b in foam applications including foam insulation in domestic refrigerator manufacturing enterprises, and HCFC-22 as a refrigerant and to a lesser extent as a foam blowing agent. The total amount of HCFC-141b and HCFC-22 consumption phased in through projects using HCFCs as a replacement of CFC-11 and CFC-12 amounts to over 3,700 ODP tonnes¹⁰, as shown in Table II.4 below.

⁹ Inventory of Approved Projects, including projects approved at the 53rd Meeting of the Executive Committee.

¹⁰ This analysis has not included the amounts phased in from refrigeration manufacturing enterprises and a few foam enterprises covered under multi-year national phase-out plans since composite phase-out data for these plans are not yet available, although it is to be expected that the conversion technologies and their outcomes will be similar to those of the projects implemented as individual, umbrella projects or specific sector plans. It is also expected that these figures are relatively small.

Country	CFC phased out in projects using HCFC technologies	HCFC phased in
Algeria	54.2	5.4
Argentina	817.4	79.0
Bahrain	15.3	1.5
Bolivia	11.0	1.1
Bosnia and Herzegovina	29.1	2.9
Brazil	4,830.8	476.1
Chile	236.5	20.2
China	14,078.4	1,168.4
Colombia	644.9	63.9
Costa Rica	33.1	3.3
Cuba	0.8	0.1
Dominican Republic	135.3	13.4
Egypt	484.4	37.4
El Salvador	18.3	1.8
Guatemala	45.4	4.5
India	4,463.8	432.6
Indonesia	2,839.7	281.4
Iran	1,045.5	103.6
Jordan	330.3	32.7
Kenya	22.8	2.3
Lebanon	81.0	8.0
Libya	61.5	6.1
Macedonia, FYR	75.1	7.4
Malaysia	1,226.5	118.5
Mauritius	4.2	0.4
Mexico	2,106.3	193.6
Morocco	118.0	11.7
Nicaragua	8.0	0.8
Nigeria	487.5	48.3
Pakistan	781.1	77.4
Panama	14.4	1.4
Paraguay	66.5	6.6
Peru	146.9	14.6
Philippines	518.9	51.4
Romania	192.0	19.0
Serbia	44.2	4.4
Sri Lanka	7.2	0.7
Sudan	4.4	0.4
Syria	628.4	62.3
Thailand	2,015.8	199.3
Tunisia	234.9	20.3
Turkey	372.2	36.9
Uruguay	98.1	9.7
Venezuela	699.1	69.3
Vietnam	44.4	4.4
Yemen	9.7	1.0
Zimbabwe	11.3	1.1
Total	40,194.6	3,706.6

Table II.4 Amounts of HCFC consumption phased-in through approved projects (ODP tonnes)

ANNEX III

INCREMENTAL COSTS FOR PHASING OUT HCFC CONSUMPTION IN THE FOAM SECTOR

1. To date, over 89,370 ODP tonnes of CFCs used by Article 5 foam manufacturing enterprises have been phased out through Multilateral Fund individual and umbrella projects and sectoral phase-out plans, comprising 80,370 ODP tonnes of CFC-11 from the rigid polyurethane foam including domestic and commercial refrigeration, and integral skin foam sectors, and 9,000 ODP tonnes of CFC-12 from the extruded polystyrene and polyethylene foam sector. Out of this amount, some 34,000 ODP tonnes of CFC-11 were replaced by HCFC-141b, 760 ODP tonnes were replaced by HCFC-22¹ and about 280 ODP tonnes by HCFC-22/HCFC-142b², with a phase-in of some 3,380 ODP tonnes of HCFC-141b and 42 ODP tonnes of HCFC-22. The latest (2006) HCFC-141b consumption reported by Article 5 countries under Article 7 of the Montreal Protocol is about 12,200 ODP tonnes. The differences in the consumption levels may possibly be attributed to growth in the consumption of HCFC-141b resulting from industrial expansion in the foam sector already supported by the Multilateral Fund and installation of new capacity.

Size of Multilateral Fund projects

2. An analysis of 657 Multilateral Fund foam projects approved as individual projects for 38 Article 5 countries to phase out CFC-11 using HCFC-141b technology showed the following:

- (a) About 50 per cent of the enterprises were small scale enterprises with CFC consumption below 20 ODP tonnes, 20 per cent were medium scale with CFC consumption ranging from 20 to 40 ODP tonnes, while 30 per cent had consumption above 40 ODP tonnes. Thus, nearly 70 per cent of all the enterprises were small and medium scale foam producers;
- (b) Only 20 per cent of the enterprises had CFC consumption over 60 ODP tonnes and could have cost-effectively used hydrocarbon-based technology;
- (c) Nearly 80 per cent of the foam enterprises converting to HCFC-141b technology were located in seven of the 38 Article 5 countries (i.e., Brazil, China, India, Indonesia, Malaysia, Mexico and Thailand). In these countries 80 per cent of the enterprises had consumption below 40 ODP tonnes per year.

3. An additional analysis of 454 Multilateral Fund projects approved for 48 Article 5 countries to phase-out CFC-11 using HCFC-141b technology and CFC-12 using alternative refrigerants in the domestic and commercial refrigeration sector, showed that:

(a) Over 75 per cent of the enterprises were small and medium scale producers with

¹ HCFC-22 was used as a substitute for CFC-11 in rigid and integral skin foam projects only in the early stages of project funding in only one country under a special programme. Over 80 ODP tonnes of CFC-11 funded to be phased out using HCFC-22/HCFC-142b was phased out using HCFC-141b.

 $^{^{2}}$ These consumption data under the Multilateral Fund are based on baseline data reported in project proposals at the various times of their approval and do not factor in any growth in consumption.

annual CFC consumption below 40 ODP tonnes (over 60 per cent of the enterprises consumed less than 20 ODP tonnes);

- (b) Nearly 14,300 ODP tonnes of CFCs used as blowing agent (i.e., over 63 per cent of the total consumption) were replaced by cyclopentane (63.5 per cent of the total) in only 119 enterprises (26 per cent). The other 335 enterprises (74 per cent) selected HCFC-141b technology;
- (c) The selection of cyclopentane technology by 26 per cent of the enterprises was mainly related to the production capacity (size) of the enterprises and the products being manufactured.

4. Cyclopentane technology was selected by 26 refrigeration manufacturing enterprises with CFC-11 consumption below 20 ODP tonnes per year. The cyclopentane technology was feasible for these low volume CFC consuming enterprises since the projects were funded under the refrigeration manufacturing sub-sector where foam and refrigerant components were treated as one project, with cost-effectiveness thresholds of US \$13.76/kg for domestic refrigeration and US \$15.21/kg for commercial refrigeration. However, with a sub-sector cost-effectiveness threshold of US \$7.83/kg, among rigid foam enterprises not manufacturing refrigeration equipment, only those with CFC consumption of over 40 ODP tonnes could select hydrocarbon-based technologies as a replacement of CFCs, .

5. From the above analysis and from a review of the baseline equipment described in Multilateral Fund project documents, the foam sector in many Article 5 countries comprises a large number of small scale units which are technically and chemically unsophisticated. Many of the enterprises usually manufacture within the same facility different combinations of foam products. For example, insulated panels for truck bodies could be produced in the same facility as block foam and moulded pipe sections, while at the same time doing spray foam at different sites using the same type of blowing agent. Some enterprises also manufacture both rigid foam and integral skin foam products in the same facility, using the same dispenser and hand mixing and the same type of blowing agent.

Selection of alternative technologies

6. Given the limited technical capabilities of many enterprises, the selection of alternative technology to CFC-11 has been driven by the need to have a technology which would not only resemble CFC-based technology (virtual drop-in) but would also be locally available to ensure readily available technical support from material suppliers (i.e., systems houses). Depending on the products being manufactured, the production volume and the baseline equipment, several alternative technologies were chosen by Article 5 countries. Specifically, methylene chloride and liquid carbon dioxide technology for flexible moulded polyurethane flexible slabstock foam; water/carbon dioxide technology for flexible moulded polyurethane; hydrocarbons (butane/LPG) for polystyrene and polyethylene foam and pentane/cyclopentane/isopentane for relatively large rigid and some integral skin foam operations.

7. For a large number of foam enterprises manufacturing rigid polyurethane and integral skin polyurethane foam enterprises, HCFC-141b met the needs of both small scale and medium scale enterprises. HCFC-141b-based systems were technically mature and commercially

available. They also provided relatively the most acceptable insulation value and energy efficiency, and the lowest investment and operating costs vis-à-vis other options. No major changes in the auxiliary equipment/tooling in the production programme, such as jig or mould redesign, were needed. According to information in approved project documents and enterprise commitment letters submitted with them, enterprises understood the transitional nature of HCFC-141b and expected the final replacement for it to have similar characteristics that would meet their production demands. Accordingly, the use of HCFCs as alternative blowing agent accounted for about 34 per cent of all CFCs phased out. Table III.1 below provides detailed breakdown of alternative blowing agents to CFC-11 used in approved Multilateral Fund rigid and integral skin polyurethane foam projects.

Replacement	ODP tonnes	% of subtotal
Rigid polyurethane foam		
50% reduced CFC	46.0	0.2%
HFC-134a	57.8	0.3%
HCFC-22	542.2	2.4%
Water/carbon dioxide	904.8	4.1%
Pentane/cyclopentane	4,036.2	18.2%
HCFC-141b	16,630.9	74.9%
Sub-total rigid polyurethane	22,217.9	100.0%
Rigid polyurethane (insulation refrigeration)		
Water/carbon dioxide	93.0	0.4%
50% reduced CFC	450.0	1.8%
HCFC-141b	9,255.7	36.6%
Pentane/cyclopentane	15,472.0	61.2%
Sub-total rigid (insulation ref.)	25,270.7	100.0%
Integral skin		
DOP (di-octyl-phtalate)	8.6	0.2%
Methylene chloride	8.8	0.2%
HCFC-22	60.0	1.5%
Pentane/cyclopentane	164.6	4.0%
Hexane	255.0	6.2%
HCFC-141b	837.6	20.4%
Water/carbon dioxide	2,766.6	67.5%
Sub-total integral skin	4,101.2	100.0%
Multiple-subsectors (*)		
HCFC-22	157	4.6%
Water/carbon dioxide	1,031	30.2%
HCFC-141b	2,231	65.2%
Sub-total multiple-subsectors	3,419	100.0%
Total	55,008.8	

Table III.1. CFC replacement technologies in rigid and integral skin polyurethane foam projects

(*) Enterprises producing a mix of several products either within or across foam sub-sectors, e.g., rigid polyurethane pipe sections, panels and flexible polyurethane moulded and integral skin foams.

Baseline equipment upgrades for conversion to HCFC-141b and other alternatives

8. Equipment baseline information provided in project documents showed invariably that existing equipment in many enterprises consisted of low pressure foam dispensers several of them home-made, with simple open top pre-mixers or mechanical drill and bucket for premixing foam chemical components and pouring into moulds and/or cavities by hand. Better equipped enterprises predominantly had low pressure foam dispensers with mechanical mixing heads while relatively small number had high pressure dispensers.

9. After extensive technical review and discussions among the Fund Secretariat, the implementing agencies, experts from the foam industry and representatives of equipment and chemical manufacturers, it was concluded that HCFC-141b-based foam would have poorer quality of insulation (e.g., increased thermal conductivity) than that produced with CFC-11, which was being replaced. It was also concluded that this problem could be mitigated by producing foam of fine cell structure which is achieved by impingement mixing of high pressure dispensers.

10. As a consequence, financial assistance was provided from the Multilateral Fund through approved projects to enterprises manufacturing rigid polyurethane foam for insulation applications as follows:

- (a) Low pressure foam dispenser that existed in the baseline was replaced with a new high pressure dispenser of equivalent effective capacity. Where cost limitations precluded provision of high pressure foam dispenser, the existing low pressure unit was replaced with a low pressure dispenser with variable ratio and heating/coating facility;
- (b) High pressure dispensers already existing in the baseline were retrofitted to enable them to accommodate the new formulations and mixing ratios, by changing the pump kits, the parts vulnerable to the solvent action of HCFC-141b and by recalibration;
- (c) Where no dispenser existed in the baseline (i.e., manual operation), a high pressure dispenser meeting the product output requirements of the enterprise was provided with 50 per cent contribution from the enterprise towards the cost of the new machine. Where the enterprise could not afford the contribution required to be made for a high pressure machine, a low pressure machine was provided with a much lower agreed contribution from the enterprise (usually between 25 and 35 per cent depending on the size and capacity of the machine). It was understood by recipient enterprises that the equipment provided under such arrangement was sufficient for handling the next stage of phasing out the HCFC;
- (d) Additional pieces of equipment were provided, mainly polyol pre-mixers, if they were used with the CFC-based foam production.

11. In the integral skin and flexible moulded foam sub-sector most enterprises had low pressure machines that had the capability to process CFC-based formulations while those that were inadequate were upgraded through retrofits. Since the insulation property of the foam is not

an issue in these applications, the replacement of the low pressure dispenser with a high pressure dispenser was not justified except when hydrocarbon-based technology was selected. Partial funding was provided for low pressure dispensers as described above for those enterprises that did not have a foam dispenser in the baseline (i.e., SMEs with hand-mixing operations). The weaknesses in the baseline dispensers, both low and high pressure, were addressed through several retrofits, including variable drive pump motors to control the ratio of the dispenser; heat exchangers for controlling material temperature; refrigeration unit (chiller) to properly control the reactivity of the water blown foams in a hot environment; barrier coat system to replicate the thick skin of the CFC-11 blown foams as closely as possible; power washer for product finishing operations; mould ovens for preheating of the moulds for the water-blown integral skin foam and for drying the barrier coat; and/or suitable moulds where baseline moulds are of glass fibre.

12. In one country, to cover polyurethane foam production for insulating products using HCFC-22 as a blowing agent in rigid polyurethane foam thermoware products, funding was provided to replace existing low-pressure with high-pressure foaming dispensing units as well as on-site pre-mixers since polyol blends with HCFC-22 were not available. For production of extruded polystyrene foam sheets using HCFC-22/HCFC-142b as a blowing agent, funding was provided for installation of a gas storage facility, replacement of the existing extruder with a new extruder and auxiliary equipment.

Items of IOC paid for CFC phase-out

13. The level of IOC of Multilateral Fund foam projects depend on several factors, including the nature of the new formulations that would produce foam of a similar quality as in the baseline, the relative prices of chemicals required for the manufacturing of foams; cost penalty resulting from increase in the density of the foam (applicable mainly to rigid insulation polyurethane foam); the cost of incremental maintenance, incremental insurance (estimated to be 5.5 per cent of net incremental cost of equipment) and incremental energy usage when selecting hydrocarbon-based technologies; and the cost of in-mould coating chemical in integral skin foam products.

14. Experience from approved foam projects shows that the IOC associated with foam density could be as high as 60 per cent of the total IOC of the project. Since the duration of IOC for rigid foam projects is two years, calculation of the component of IOC associated with increase in foam density is based on "initial density increase" for the first year and "mature density increase" for the second year. IOC of high density rigid insulation foams (above 45 kg/m³), such as pipe-in-pipe foam (density: 70-80 kg/m³) and spray foam for roofs (density: 48-50 kg/m³) are not affected by foam density increase, all other applications are affected with increases in density ranging from 4-16 per cent for the first year and 3-13 per cent for the second year. Pentane and cyclopentane-based foam for boards and domestic refrigeration have the highest increase respectively of 16 and 13 per cent and 16 and 10 per cent in the first and second years.

15. The Secretariat and the implementing agencies have worked on and agreed the baseline densities and mature densities during conversion from CFC-11 to HCFC-141b technology. These mature densities could consequently become the baseline densities for the second stage conversion from HCFC-141b to non-ODS alternatives. However, information obtained on conversions using the new generation of alternative blowing agents, particularly HFC-245fa and

methyl formate indicate that increase in foam density after conversion might not be an issue as lower foam densities than that obtained with HCFC-141b could be achieved although 1 to 2 per cent increases in density could occur particularly with methyl formate which could be mitigated with time through formulation optimization. It may, therefore, be necessary to revisit the issue of changes in foam density in order to more accurately account for the required level of IOC.

Alternative blowing agents to HCFCs

16. The choice of substitute blowing agent and its associated conversion technology had to meet the following criteria which are equally applicable to conversion from HCFC-based technology:

- (a) Proven and reasonably mature technology;
- (b) Critical properties to be maintained in the end product;
- (c) Cost effective conversion and local availability of substitute, at acceptable pricing;
- (d) Support from the local systems suppliers; and
- (e) Meeting established standards on environment and safety.

17. Information available from project documents and confirmed by project completion reports, the TEAP Foam Technical Options Committee and other sources point to the following technologies as potential alternatives to HCFCs in foam blowing.

Technologies already in use in Article 5 countries

Water-based (*water/CO*₂)

18. Water-based systems, where the blowing agent is carbon dioxide generated during the foaming process, became available in some Article 5 countries during the conversion from CFC-11 in rigid integral skin foams, rigid foams with relatively less critical insulation applications such as in-situ foams, surf boards, low density packaging foams, and thermoware and spray foam, initially with the use of HCFC-141b. Water-based systems, particularly for rigid foams, are up to 50 per cent more expensive than other CFC-free technologies since the technology is associated with reductions in insulation value and lower cell stability. The problem is addressed by adding more material (up to 50 per cent) to increase foam thickness, where feasible, with resulting increase in cost. Thus, the use of water-based technology in pour-in-place for insulation applications, while in principle feasible, would require an increase in thickness, which is not always practical or cost-effective.

19. Rigid integral skin foams have almost universally converted to all-water-based systems. In most of these applications, skin formation is triggered through densification (mould pressure) rather than condensation. Accordingly, subsequent coating may be required and densities can be increased. However, since densities in this application are already relatively high, this is not a major issue. This is not the case for flexible and semi-flexible integral skin foams. The related

cost penalty arising from significantly increased densities and the poor skin formation associated with water blown systems has made the use of pentane, hexane and HFCs attractive in non-Article 5 countries and has caused almost universal conversion to HCFC-141b in Article 5 countries. Under the Multilateral Fund also projects have been approved for 23 shoe sole (semi-flexible integral skin) manufacturers, mainly in Brazil, Indonesia, Mexico and Pakistan. About 60 per cent of the enterprises employed water/ CO_2 technology while 40 per cent used hexane.

20. In one Article 5 country, with the assistance from the Multilateral Fund some enterprises converted their integral skin foam production to water-blown technology without increase in foam density to achieve a surface finish of the product using water-based cross-linked in-mould coating. This required inexpensive modifications to their manufacturing equipment. However, the IOC was still higher than that of using HCFC-141b due to the higher cost of the coating. Water-based systems have zero ODP. Water vapour is a major greenhouse gas; however, new emissions do not affect global warming because it is already at a saturation point in the atmosphere. CO_2 has a GWP of 1.

Hydrocarbons

21. Hydrocarbons as foam blowing agents have been proven commercially in both non-Article 5 and Article 5 countries. Pentanes, namely n-, iso-, and cyclopentane or their blends, have emerged as the most favoured blowing agents among the hydrocarbons, because the level of their use needed to achieve the same foam density is substantially lower than that for other blowing agents such as HCFC-141b. They constitute a permanent final technology, and their relatively low prices compared to other blowing agents make them economically attractive. However, in several projects approved under the Multilateral Fund claims for costs associated with increase in foam density or dimensional stability, incremental maintenance, incremental energy usage and incremental insurance have often resulted in substantial IOC.

22. Hydrocarbons have been the preferred conversion technology for large and organized foam producers, where the safety requirements could be complied with and investments could be economically justified. However, small-sized enterprises in non-Article 5 Parties have been unable to adopt hydrocarbon technologies to any significant extent due to the investment need in new equipment³. Most of these enterprises have selected HFC-based technologies despite the higher system costs. Where insulation requirements are less stringent, greater use of CO2 (water) has also occurred.

23. Recent developments in equipment and technological processes appear to have made it possible for the investment costs as well as safety concerns associated with the technology to be considerably reduced. These late developments would appear to make the conversion to hydrocarbon technology more affordable and feasible to enterprises with low to medium level of HCFC consumption. Furthermore, the role of systems houses in optimizing formulations for SMEs has been particularly important. Hydrocarbons have zero ODP and a relatively low GWP (maximum 25).

³ TEAP Progress Report, May 2008.

Technologies with limited application/use in Article 5 countries

HFCs

24. HFCs have a higher insulating value than other foam blowing alternatives at operating temperatures for applications such as walk-in coolers and cold storage areas. They are mainly used where end product fire performance is an issue with insurers or where investment costs for hydrocarbon-based technology are prohibitive mainly for SMEs.

25. The three main HFCs currently used in foam applications are HFC-134a, HFC-245fa and HFC-365mfc (and its blend with HFC-227ea).

- (a) HFC-245fa (marketed primarily by Honeywell as Enovate 3000) is currently available across most, if not all, non-Article 5 countries although only currently manufactured in the United States and, to a smaller extent, in Japan (Central Glass). It has been used to replace HCFCs in most rigid foam applications, including domestic refrigeration, spray foam, and metal faced sandwich panels. Feedback from users underlines the excellent flow properties of systems containing HFC-245fa, good solubility in polyol, possible foam density reductions and reduced panel waste due to ease of processing. In most cases it can be processed with the same spray foam and pour in place dispensers used for HCFC-141b. HFC-245fa is typically used as co-blowing agent with CO₂/water in order to gain from the thermal performance, while limiting the cost impact. However, HFC-245fa poses some technical challenges to formulators due to its low boiling point and its lower fire-resistance properties relative to HCFC-141b. It currently has limited commercial availability in Article 5 countries due to lack of demand. It has a high price, currently costing over US \$10.00/kg for bulk containers. HFC-245fa has zero ODP value and a GWP of 1,020.
- (b) HFC-365mfc and its blend HFC-365mfc/HFC227ea (marketed almost exclusively by Solvay Fluor as Solkane-365 and Solkane-365/227, respectively), is currently available in most, if not all, non-Article 5 countries with the exception of the Canada and the United States, where patents prevent its use in foams. HFC-365mfc-blown foams have a fine cell structure with good insulation properties and good compressive strength. These foams are good for insulation purposes, where a non flammable liquid foaming agent with low thermal conductivity is needed, but does have a lower blowing efficiency than some other alternatives. For several applications, HFC-365mfc is blended with HFC-227ea to overcome a minor flammability issue. It has also a high price ranging from US \$4.50 to US \$5.00/kg. HFC-365mfc has zero ODP and GWP of 610. HFC-227ea has a much higher GWP value (2,900), however, it is used in relatively small proportions;
- (c) HFC-134a has been used widely in Multilateral Fund projects as a refrigerant in refrigeration projects. However its use as a foam blowing agent has been very minimal due to processing difficulties, the fact that its pre-blends cannot be made available, and high production costs owing to the need for on-site pre-mixer which would limit its application by SMEs. New formulations for replacing

HCFCs in the manufacture of extruded polystyrene boards in North America are almost certain to relay on HFC-134a as a large component of the final blowing agent⁴. HFC-134a has zero ODP and GWP of 1,300.

26. In order to optimise the cost-effectiveness of HFC-based systems, foam formulators have developed products containing levels of co-blowing agents higher than have traditionally been used with HCFC-based formulations. The most prevalent co-blowing agent used is CO2 (water) and to a lesser extent hydrocarbons, CO2 (LCD), methyl formate, alcohols, and others. In many applications where limited space prevents an increase in insulation thickness (i.e., domestic and commercial refrigerators, closed cell spray foam insulation for existing building envelopes, building panels, and insulated transport containers), HFCs are selected as the blowing agent in order to provide the best available energy efficiency. In many cases the energy efficiency requirements are dictated by regulation, building codes or voluntary programmes⁵.

Methyl formate

27. Methyl formate marketed by Foam Supplies Inc. (FSI) of the United States as Ecomate, is an emerging technology that could be of interest in Article 5 countries due to its reported high efficiency and low cost. Information available from the suppliers indicates that methyl formate seems an ideal replacement for HCFC-141b in integral skin foams because it has a desirable combination of boiling point and solubility to mimic those of HCFC-141b. Its boiling point just above ambient, allows good skin formation without expensive cooling. Spray and pour foams made with methyl formate are also said to have good physical properties, good fire resistance and good stability⁶. However, other market information appears to contradict some of the supplier information indicating that while Ecomate technology is interesting and promising it does not appear to be proven for many foam applications and at this stage could be more expensive than HCFC-141b, although it could be more cost competitive in the long run. Activities to optimize the technology for use in Multilateral Fund projects would be desirable.

28. The chemical is considered "extremely flammable but not explosive". FSI indicates that process emissions from Ecomate systems are so low as not to require special precautions in the manufacturing area. As Ecomate is normally sold as a system to foam producers, any flammability issues would be restricted to the systems supplier. Shipping of the systems is possible without "flammable" tags.⁷

29. Ecomate is exclusively licensed to Purcom⁸ for Latin America, to BOC Specialty Gases for the United Kingdom and Ireland and to Australian Urethane Systems for Australia, New

⁴ TEAP Progress Report. May 2008.

⁵ Several analyses have been carried out on these applications that demonstrate that the Life Cycle Climate Performance (LCCP) associated with the use of HFCs is, in many cases, favourable and no worse than neutral in others compared to low GWP alternatives, even when all of the blowing agents contained in the foams are deemed to be emitted over the lifecycle. The situation is further improved when measures can be adopted to minimise emissions, particularly at end-of-life.

⁶ Dennis Jones, BOC Ltd., Ecomate – A Revolutionary yet Economical New Blowing Agent.

⁷ John Murphy, Mark Schulte, Buck Green, Ecomate® Foam Blowing Agent, API Polyurethanes 2005 Technical Conference, 10/18/2005 (page 302ff); John Murphy – Foam Supplies, Inc and Dennis Jones, BOC Ltd. Ecomate - The Revolutionary New Blowing Agent for Europe, Utech 2006, Paper #18, March 28, 2006.

⁸ Juan Valásquez - São Paulo – Brazil. International Gazeta, Purcom acquires foam suppliers license (Mjzanon's IP Newsletter - September 2005).

UNEP/OzL.Pro/ExCom/55/47 Annex III

Zealand and the Pacific Rim. The price of methyl formate worldwide is reported to be in the same range as of the price of pentanes but not affected by the price pressures of crude oil on pentanes. Methyl formate has zero ODP and relatively low GWP⁹, likely to be similar to other hydrocarbons.

Other technologies

30. Other alternatives technologies to HCFC-141b have been introduced in non-Article 5 countries¹⁰, including:

- (a) Super-critical CO_2 spray foam technology. This technology has been established mainly in Japan with a market penetration of no more than 10 per cent. The technology is yet to make any significant market penetration beyond Japan. The Green Procurement Law has also promoted the greater uptake of CO_2 (water), which is particularly suited to the Japanese market and growth of this technology has exceeded that of super-critical CO_2 ;
- (b) A new low-GWP blowing agent, HBA-1, has been launched (Honeywell), where hydrocarbons cannot be used to replace HFC-134a for one-component foams for safety and performance reasons. This blowing agent will be commercially available in July 2008, in time to enable compliance with the requirements of the European F-Gas Regulation;
- (c) The use of not-in-kind technologies such as fibrous insulation has increased in insulation markets as a result of the greater thermal efficiency of foam insulation and improvements in fire performance (greater use of polyisocyanurate technologies);
- (d) The alternative technologies for HCFCs by extruded polystyrene board producers in the United States are likely a combination of HFCs, CO₂, hydrocarbons and/or water.

Costs associated with the financing of HCFC phase-out in the foam Sector

31. The costs associated with the financing of HCFC phase-out in the foam sector would include:

- (a) <u>Initiation costs</u>: Costs associated with preparatory/enabling activities such as formulation validation activities and other initiatives to demonstrate the feasibility, performance and acceptability of alternative technologies, and investigate and establish inherent costs of conversion;
- (b) <u>Investment costs:</u> ICC and IOC , including technical assistance and training, site preparation, trials, testing, installation and commissioning; and

⁹ The supplier's claim of zero GWP is based on the US EPA SNAP evaluation which described the GWP of methyl formate as 'likely to be negligible'. However, no actual testing was carried out to support this. Indeed, there is no chemical reason why the value should not be similar to that of other hydrocarbons.

¹⁰ TEAP Progress Report, May 2008.

(c) <u>Management costs</u>: Costs for supervision, monitoring, reporting, evaluation, verification, agency coordination, as a component of the overall HCFC management plan.

32. As the management costs are expected to be addressed as part of the preparation of the various HCFC management plans (HPMPs) only the initiation and investment costs are discussed in this paper. As the initiation activities are precursors to the investment activities the associated costs have been addressed as a whole. The main initiation activity under the HCFC phase-out programme is the validation of HCFC alternative foam formulations involving systems houses and foam chemical suppliers. The cost of this activity has been estimated and is attached as Appendix II to this Annex. The components of the investment cost, namely ICC and IOC are discussed below.

Range of ICC for phasing-out HCFCs

33. For purposes of funding the phase-out of HCFCs, the recipient enterprises may be put into the following categories, namely

- (a) Enterprises that have converted their foam production from CFC-11 to HCFC-141b with the financial and technical assistance of the Multilateral Fund;
- (b) Enterprises that have converted their foam production from CFC-11 to HCFC-141b through their own resources and/or enterprises that might have established new foam production plants or installed new foaming equipment based on HCFC-141b.
- 34. The second category of enterprises consists of the following:
 - (a) Enterprises that established CFC-based foam production facilities after the cut-off date of 25 July 1995 using low pressure machines and have subsequently converted to HCFC-141b-based production by replacing the low pressure machines with high pressure ones and enterprises that established CFC-based foam production facilities after the cut-off date of 25 July 1995 using high pressure machines and have converted to HCFC-141b;
 - (b) Enterprises that established CFC-based foam production facilities after the cut-off date of 25 July 1995 using low pressure machines and have subsequently converted to HCFC-141b-based production on the same machines or enterprises that established HCFC-141b-based production on low pressure machines and continue to produce on the same machine;
 - (c) Enterprises that have converted part of their CFC-based foam production to HCFC-141b with the assistance of the Multilateral Fund while the other part on low pressure foaming capacity established after the July 1995 cut-off date did not receive assistance but continues to be used to produce HCFC-141b-based foam without any changes.

35. Against the background of the technical upgrades of enterprises that received assistance from the Multilateral Fund and of the discussion above regarding categories of enterprises that

UNEP/OzL.Pro/ExCom/55/47 Annex III

may potentially receive assistance from the Fund, the Secretariat made two parallel ICC estimates based on retrofit of existing equipment or replacement of existing equipment. The following considerations informed the calculations of the ICC:

- (a) Conversion from HCFC-141b to liquid blowing agents, such as HFC-245fa, HFC-365mfc, HFC-365mfc/HFC-227ea blend, water/CO₂ or methyl formate, should be based on retrofits of the existing foaming machine in the baseline. The need for replacement of existing production equipment should be technically demonstrated and considered on a case-by-case basis¹¹;
- (b) Conversion to hydrocarbon technology should be based on retrofit or replacement of existing foam dispenser and pre-mixers as technically required. Additional equipment for storage of hydrocarbon and for safety is included.
- 36. Thus the ICC were determined on the basis of the following:
 - (a) Calculations were based on a unit operation (i.e., one dispenser and associated manufacturing equipment);
 - (b) The majority of enterprises rely on premixed systems instead of premixing in-house for each application segment. Thus, the cost of a new premixer or retrofit of existing premixer was included in the list of equipment for those enterprises that do not rely on premixed systems;
 - (c) The minimum cost was based on retrofit of all required equipment items except when an item has to be replaced for technical reasons such as the conversion to hydrocarbon-based blowing agent. The maximum cost was based on installation of new equipment or replacement of old equipment with new ones without any deductions for counterpart contribution. Also, the minimum and maximum cost levels represent the absolute levels;
 - (d) The cost of technology transfer, training and trials were estimated at a higher level than the levels during the transition from CFC to HCFCs due to anticipated need for more activities for finessing foam formulations with potentially higher cost of trials than was the case with transition to HCFC-141b;
 - (e) The ICC for integral skin foam sub-sector were calculated based on retrofits only except in the conversion from HCFC-141b to hydrocarbon-based technology where new production equipment is required.

37. Detailed calculations and breakdown for the various segments are provided in Appendix I.

¹¹ For example, the cost of a new storage tank could be an eligible incremental capital cost where the baseline tank is not suitable to safely handle HFC-245fa. Any need for retrofit or replacement of any existing equipment or installation of additional equipment for conversion from HCFCs to non-ODS alternatives would have to be technically justified and fully demonstrated.

Range of IOC

38. The level of IOC for conversion from HCFCs to non-ODS-based technologies would depend on the nature of the new formulations that would produce foam of a similar quality as in the baseline formulation, the relative prices of chemicals required for the manufacturing of the foam; the expected increase in foam density; potential incremental maintenance, insurance and energy usage costs when using hydrocarbon-based technologies; and the price and quantities of in-mould coating chemicals when used during production of water-blown integral skin foam.

39. The proportions of the main chemical ingredients in foam formulations (namely blowing agent, the polyol and MDI) and their prices are the key determinants of the level of incremental costs or savings. From an analysis of several Multilateral Fund projects, it was observed that small changes in material ratios and/or price differential could result in substantial incremental operating costs for one enterprise but incremental operating savings for another enterprise for the same type and amount of foam produced. Increase in foam density which translates into the cost of additional foam material also has a significant impact on IOC, representing in some cases 50 per cent or more of the total operating costs. The levels of increase in foam densities associated with different foam applications were approved at the 31st Meeting of the Executive Committee (decision 31/44) with the view to revisit the issue in future and make modifications where necessary. The increases in foam densities were based on the transition from CFC-11 to HCFC-141b and need to be revisited for the transition from HCFC-141b to other alternative technologies, especially since there are indications that for some of the alternatives increase in foam density following conversion may no longer be the case.

40. Cost ranges of IOC were calculated for the following alternative technologies: water-based systems, hydrocarbons, both pentane and cyclopentane, HFC-245fa and methyl formate. The precise levels of IOC can only be fully quantified when all the cost elements are known, including the cost of all the component chemicals (polyol, isocyanate, blowing agents), formulation ratios, foam densities. This information is available only at the time of review and evaluation of actual projects. Thus in the absence of actual projects the IOC were estimated on the basis of the following assumptions and considerations:

- (a) Prices of chemicals for pentane and water-based technologies for which the Secretariat has extensive experience and a large body of information from project completion reports, prices were derived from project completion reports completed between 2000 and 2006. The information was complemented with information on prices provided by some Ozone Units through bilateral and implementing agencies;
- (b) Prices of HFC-245fa and methyl formate were obtained from the relevant companies (Honeywell and Foam Supplies Inc.);
- (c) Calculations were based on the relationship between HCFC-141b and the replacement chemicals based on ratios of 1:0.50 and 1:0.75 for HFC-245fa and 1:0.50 for methyl formate consistent with information obtained from the suppliers; 1:1.5 for water-based systems; 1:0.5 for pentane and cyclopentane in rigid foam; and 1:0.3 for integral skin foam similar to the method used in approved projects;

UNEP/OzL.Pro/ExCom/55/47 Annex III

- (d) Given the limited time available for the preparation of this paper, the direct association between increases in foam density from HCFC-141b to other technologies for the various rigid polyurethane insulation foam application segments could not be subject to a thorough review. Therefore, no increase in density was factored into the calculation for HFC-245fa and methyl formate. However, as stated earlier, increase in foam density may not be a factor in reality. Based on observations made upon review of calculations of the IOC of hydrocarbon-based projects a 10 per cent increase in foam density was factored into the calculations for pentane and cyclopentane-blown foams;
- (e) The cost of in-mould coating chemical was included in the calculations for the integral skin foam as it is a component of the foam processing chemicals accounting for up to about 70 per cent of the total IOC;
- (f) Costs associated with incremental maintenance, insurance and energy usage of hydrocarbon-based technologies were also included in the calculation for integral skin foam consistent with the practice in approved projects.

41. The IOC were calculated for enterprises with HCFC-141b consumptions of 5, 25, and 75 metric tonnes (0.55, 2.75 and 8.25 ODP tonnes) to represent the rigid foam sub-sector and enterprises with consumptions of 10 and 30 metric tonnes (1.1 and 3.3 ODP tonnes) for the integral skin foam sub-sector. Calculation per kg of HCFC-141b eliminated was also made. The calculations were checked against approved projects to ensure consistency and accuracy of the methodology.

42. The detailed calculations as well as its application to typical consumption levels as indicated above for rigid and integral skin foams can be found in Appendix 1.

Strategies for viable and sustainable HCFC conversion in the foam sector

43. In rigid and integral skin polyurethane foam production, most enterprises rely on polyols commercially premixed with the blowing agent and other essential ingredients (premixed polyols)¹² that are provided by companies known as systems houses. While enterprises with pre-mixers on site have the flexibility to vary their foam formulations to meet their customers' end-product requirements, SMEs have to rely on systems houses to meet their customers' requirements. In that regard access to a systems house becomes critical to the competitiveness and/or productivity of a foam producer and above all the sustainability of the conversion programme overall. During the first phase of CFC phase-out, systems houses played a key role in the market penetration of HCFC-141b in Article 5 countries.

44. Eleven group projects involving 290 SMEs centered around local indigenous systems houses were approved in four countries at a total cost of US \$7.2 million. The direct impact of involvement of the systems houses was a phase-out of over 1,300 ODP tonnes of CFC-11. Table III.2 provides basic information on the systems houses assisted through the Multilateral Fund.

¹² Data on approved CFC-based integral skin and rigid foam projects shows that about 80 to 85 per cent relied on premixed polyol. Also, over 60 per cent of foam enterprises relying on premixed polyol were SMEs consuming between 0.2 and 20.0 ODP tonnes CFC-11 per year.

Country	Systems house	Number of	Sector/sub-sectors	Project cost	Impact (ODP	Substitute
		enterprises		(US\$)	tonnes)	blowing agent
Brazil	JNP	25	Rigid PU, integral skin/	636,400		HCFC-141b
			flexible molded PU		80.3	
Brazil	Plastquim	50	Rigid PU, integral skin/	721,500		HCFC-141b
			flexible molded PU		153.4	
Brazil	Polsul	14	Rigid PU	536,892	55.0	HCFC-141b
Colombia	GMP	29	Rigid PU	449,130	56.6	HCFC-141b
India	Polymermann	80	Rigid PU	1,403,921	290.0	HCFC-141b
India	Shevathene	28	Rigid PU	699,139		HCFC-141b
	Linopack				105.7	
Mexico	Comsisa	20	Rigid PU, integral skin	424,055	68.7	HCFC-141b
Mexico	Orca	11	Integral skin shoe sole	1,321,500	190.0	Hexane
Mexico	Productos Eiffel	10	Rigid PU spray foam	345,000	100.0	Water/CO2
Mexico	Pumex	19	Rigid PU spray foam	519,750	167.7	HCFC-141b
Mexico	Valcom	5	Rigid PU spray foam	122,440	44.3	HCFC-141b
Total		291		7,179,727	1,311.7	

Table III.2. Systems house activities in the phase-out of CFCs

45. In collaboration with implementing agencies' experts, systems houses not only provided suitable foam systems to their customers but also they undertook technology transfer and training of the downstream foam enterprises as technology partners.

The infrastructure already put in place at some system houses should be utilized to 46. continue to facilitate the phase-out of HCFCs, through the development, optimization and validation of formulations with non-HCFC blowing agents suited to their local markets and possibly neighboring countries where low levels of HCFC consumption would not make a systems house operation feasible. This validation should include checking processing characteristics; product performance; commercial availability; safety; environmental performance; and related incremental costs. The estimated costs of the proposed validation range from US \$145,000 to US \$210,000 per systems house project for non-flammable blowing agents technology and from US \$200,000 to US \$320,000 per systems house for flammable blowing agents technology. Once the validation process has been completed and new non-HCFC based pre-blended polyols are developed, systems houses would provide technology transfers and training for a selected number of downstream foam enterprises (i.e., no more than 10 enterprises per systems house and should include, if possible, different foam applications). Based on the experience gained in the introduction of the new non-HCFC based polyols, actual ICC and IOC for the conversion of foam enterprises could then be fully assessed. A detailed analysis of the costs can be found in Appendix II to this Annex III.

Appendix I

ICC CALCULATIONS

ICC ranges for conversion of panels, pipe in pipe foam, thermoware, domestic refrigerators (US \$)

Foam application	Alternative technology
Panels	HFC-254a, pentane
Pipe-in-pipe	HFC-254a, water (limited applications), pentane
Thermoware	HFC-254a, water, pentane (limited application)
Domestic refrigerator	HFC-254a, pentane

Equipment item	HFC-	245fa	Water	:/CO2	Pentane	
	Low	High	Low	High	Low	High
Production						
Replacement of low pressure with high	60,000	100,000	60,000	100,000	90,000	170,000
pressure dispenser						
Retrofit of high pressure dispenser	10,000	15,000	10,000	15,000	60,000	100,000
Retrofit of pre-mixing unit (where eligible)	-	10,000	-	10,000		
Replacement of pre-mixing unit	20,000	60,000	20,000	60,000	55,000	85,000
Modification of press					15,000	25,000
Hydrocarbon tank and accessories (piping and					20,000	55,000
pumps, ventilation)						
Buffer tank for polyol					10,000	15,000
Nitrogen supply system					10,000	40,000
Plant safety						
Ventilation and exhaust system (fans, piping,					15,000	85,000
ductworks, grounding, electrical						
boards/connections)						
Heating, ventilation and enclosure for cabinet					40,000	50,000
plant (domestic refrigeration)						
Heating, ventilation and enclosure for door					40,000	50,000
plant (domestic refrigeration)						
Gas sensors, alarm, monitoring system for					25,000	50,000
entire plant						
Fire protection/control system for the plant					-	10,000
Lightning protection and grounding					15,000	25,000
Antistatic floor					-	5,000
Safety audit/Safety inspection & certification					10,000	25,000
Stand-by electric generator					-	15,000
General works						
Civil work/plant modifications					20,000	25,000
Technology transfer/training	10,000	20,000	5,000	10,000	20,000	30,000
Trials and commissioning	10,000	15,000	10,000	20,000	10,000	20,000
Total						
Total retrofit	30,000	60,000	25,000	55,000	375,000	710,000
Total replacement	100,000	195,000	95,000	180,000	385,000	780,000

ICC ranges for conversion of spray foams and discontinuous block foam (US \$)

Equipment item	Low	High	Low	High	
	Low-output	t dispenser	High-output	High-output dispenser	
Production: Spray foam (*)		•		-	
Replacement of low pressure with high pressure	15,000	20,000			
spray foam dispenser (7 kg/min) (with standard					
accessories)					
Replacement of low pressure with high pressure			25,000	40,000	
spray foam dispenser (12-15 kg/min) (with					
standard accessories) (***)					
Retrofit of high pressure spray foam dispenser	-	15,000	-	15,000	
Replacement of pre-mixing unit (where eligible)	20,000	40,000	20,000	40,000	
Retrofit of pre-mixing unit (where available)	-	10,000	-	10,000	
Production: Discontinuous blocks (**)	Dispenser option		Boxfoam option		
Replacement of box foam (handmix) with large	50,000	70,000			
output low pressure dispenser					
Replacement of box foam with semi-automatic			50,000	65,000	
boxfoam unit					
Retrofit of low pressure dispenser	-	15,000	-	-	
Retrofit of semi-automatic boxfoam unit			-	10,000	
Replacement of pre-mixing unit (where eligible)	20,000	40,000			
Retrofit of pre-mixing unit (where available)	-	10,000	-	-	
General works					
Technology transfer and training	5,000	10,000	5,000	10,000	
Trials and commissioning	10,000	20,000	10,000	20,000	
Total					
Total retrofit spray foam	15,000	55,000	15,000	55,000	
Total replacement spray foam	50,000	110,000	60,000	110,000	
Total retrofit discontinuous blocks foam	15,000	55,000	5,000	40,000	
Total replacement discontinuous blocks foam	85,000	140,000	65,000	95,000	

* Hydrocarbon technology not included.
** Hydrocarbon technology not included as availability in this segment is uncertain.
*** For SMEs having spray foam and pour-in-place operations.

ICC ranges for integra	l skin foams (US \$)
------------------------	----------------------

Equipment item	HFC-2	245fa	Water	:/CO2	Pentane	
	Low	High	Low	High	Low	High
Production						
Retrofit of dispenser for refrigerated thermal	10,000	15,000	10,000	15,000		
control						
Retrofit of dispenser for variable ratio control	10,000	15,000	10,000	15,000		
Penta-foam dispenser					90,000	120,000
Premixer with polyol and buffer tank					65,000	85,000
Pentane tank (500-1,000 l) with auxiliaries					25,000	35,000
In mold coating high-volume low-pressure spray			10,000	15,000		
system						
Mold preheating oven	5,000	10,000	5,000	10,000		
Infrared coating drying system			10,000	15,000		
In mold coating exhaust booth			10,000	15,000		
Plant safety						
Process ventilation					20,000	30,000
Electrical grounding					5,000	10,000
Pentane monitoring/alarm system					20,000	40,000
General works						
Technology transfer/training (foam)	5,000	10,000	5,000	10,000	10,000	30,000
Technology transfer, training (coating)			5,000	10,000		
Trials and commissioning	10,000	20,000	10,000	20,000	5,000	10,000
Safety audits					10,000	20,000
Miscellaneous local works					15,000	25,000
Total						
Retrofit	40,000	70,000	75,000	125,000	265,000	405,000

Chemical	Prices US \$/kg		Ratio (*)	Consumption (metric tonnes)			
Chemical	Low	High		Plant 1	Plant 2	Plant 3	
HCFC-141b	2.50	3.80	1.00	5.00	25.00	75.00	
HFC-245fa(**)	10.40	12.00	0.50	2.50	12.50	37.50	
HFC-245fa (**)	10.40	12.00	0.75	3.75	18.75	56.25	
Methyl formate	2.20	3.20	0.50	2.50	12.50	37.50	
Water-based systems	3.00	3.50	1.50	7.50	37.50	112.50	
Pentane	1.90	2.50	0.50	2.50	12.50	37.50	
Cyclopentane	2.10	3.30	0.50	2.50	12.50	37.50	
MDI (pentane)	3.00	3.50	0.10	0.50	2.50	7.50	

IOC: Rigid polyurethane foam (US \$)

(*) Ratio between HCFC-141b and the alternative blowing agent

(**) The lower and higher prices represent bulk price and small package price allowing for 15% difference.

Description	Plant capacity: 5 tonnes		Plant capacity: 25 tonnes		Plant capacity: 75 tonnes	
Before conversion						
HCFC-141b	12,500	19,000	62,500	95,000	187,500	285,000
After conversion						
HFC-245fa (50%)	26,000	30,000	130,000	150,000	390,000	450,000
HFC-245fa (75%)	39,000	45,000	195,000	225,000	585,000	675,000
Water-based system	22,500	26,250	112,500	131,250	337,500	393,750
Methyl formate	5,500	8,000	27,500	40,000	82,500	120,000
Pentane	6,250	8,000	31,250	40,000	93,750	120,000
Cyclopentane	6,750	10,000	33,750	50,000	101,250	150,000
One year IOC						
HFC-245fa (50%)	13,500	11,000	67,500	55,000	202,500	165,000
HFC-245fa (75%)	26,500	26,000	132,500	130,000	397,500	390,000
Water-based system	10,000	7,250	50,000	36,250	150,000	108,750
Methyl formate	(7,000)	(11,000)	(35,000)	(55,000)	(105,000)	(165,000)
Pentane	(6,250)	(11,000)	(31,250)	(55,000)	(93,750)	(165,000)
Cyclopentane	(5,750)	(9,000)	(28,750)	(45,000)	(86,250)	(135,000)
Two year IOC						
HFC-245fa (50%)	23,490	19,140	117,450	95,700	352,350	287,100
HFC-245fa (75%)	46,110	45,240	230,550	226,200	691,650	678,600
Water-based system	17,400	12,615	87,000	63,075	261,000	189,225
Methyl formate	(12,180)	(19,140)	(60,900)	(95,700)	(182,700)	(287,100)
Pentane	(10,875)	(19,140)	(54,375)	(95,700)	(163,125)	(287,100)
Cyclopentane	(10,005)	(15,660)	(50,025)	(78,300)	(150,075)	(234,900)

Notes

1. For pentane projects to the IOC should be added the following costs:

(a) Incremental maintenance of 5 per cent of net incremental investment

(b) Incremental insurance of 0.5 per cent of net incremental investment

(c) Extra power of 5 kW/dispenser, 10 kW for premixer, 10 kW for ventilation for 2,000 hr/year at 0.10/kW

2. The prices of HFC-245fa and methyl formate are global prices as provided by manufacturers

IOC: Integral skin foam (US \$)

Chemical	Prices US \$/kg		Ratio (*)	Consumption (metric tonnes)		
Cilemical	Low	High	Katio (*)	Plant 1	Plant 2	
HCFC-141b	2.50	3.80	1.00	10.00	30.00	
HFC-245fa(**)	10.40	12.00	0.35	3.50	10.50	
HFC-245fa (**)	10.40	12.00	0.40	4.00	12.00	
Methyl formate	2.20	3.20	0.30	3.00	9.00	
Water-based systems	3.00	3.50	1.50	15.00	45.00	
Pentane/Isopentane	1.90	2.50	0.30	3.00	9.00	
In-mold coating	1.20	2.10				

(*) Ratio between HCFC-141b and the alternative blowing agent

(**) For water-based systems.

Description	Plant capacit	y: 10 tonnes	Plant capacity: 30 tonnes		
Before conversion		-		-	
HCFC-141b	25,000	38,000	75,000	114,000	
After conversion					
HFC-245fa (50%)	36,400	42,000	109,200	126,000	
HFC-245fa (75%)	41,600	48,000	124,800	144,000	
Water-based system	99,000	162,750	297,000	488,250	
Methyl formate	6,600	9,600	19,800	28,800	
Pentane	23,089	31,434	34,489	46,434	
One year IOC					
HFC-245fa (50%)	11,400	4,000	34,200	12,000	
HFC-245fa (75%)	16,600	10,000	49,800	30,000	
Water-based system	74,000	124,750	222,000	374,250	
Methyl formate	(18,400)	(28,400)	(55,200)	(85,200)	
Pentane	(1,911)	(6,566)	(40,511)	(67,566)	
Two year IOC					
HFC-245fa (50%)	19,836	6,960	59,508	20,880	
HFC-245fa (75%)	28,884	17,400	86,652	52,200	
Water-based system	128,760	217,065	386,280	651,195	
Methyl formate	(32,016)	(49,416)	(96,048)	(148,248)	
Pentane	(3,326)	(11,425)	(70,490)	(117,565)	

Notes;

1. For pentane conversion projects to the IOC should be added the following operating costs:

Incremental maintenance & insurance (minimum) = 5.5% of 85% of \$265,000Incremental maintenance & insurance (maximum) = 5.5% of 85% of \$405,000

Incremental energy @ 25kW for 2000hrs/year (US \$0.1/kWh)

2. For water-based systems the cost of in-mold coating is 1.2 to 2.1 times the cost of MDI, depending on whether in-mold coating is used before and after conversion or only after conversion with water-blowing. Price of in-mold coating taken as US \$10.0/kg.

Appendix II

SYSTEM HOUSES PROJECTS TO VALIDATE HCFC ALTERNATIVE FOAM SYSTEMS

Description	Low (US \$)	High (US\$)
I.1 Preparatory work		
Preparation cost (participants, profile, contacts, arrangements for workshops	20,000	25,000
Technology transfer*	40,000	50,000
Technical (training) workshop	30,000	50,000
Sub-total preparatory work	90,000	125,000
I.2 Items for non-flammable blowing agents technology	, , , , , , , , , , , , , , , , , , ,	
Analytical equipment	10,000	15,000
Blending equipment	10,000	20,000
Trials	20,000	30,000
Sub-total non-flammable blowing agents	40,000	65,000
I.3 Items for flammable blowing agents technology	, , , , , , , , , , , , , , , , , , ,	
Analytical equipment	10,000	15,000
Blending equipment	60,000	100,000
Packaging and distribution costs for pre-blended polyol	15,000	30,000
Trials	10,000	20,000
Sub-total flammable blowing agents	95,000	165,000
I.4 Summary cost for systems house		, í
ICC per systems house project for non-flammable blowing agents technology $(I.1 + I.2)$	145,000	210,000
including contingency (at 10 per cent)		
ICC per systems house for flammable blowing agents technology demonstration, (I.1	200,000	320,000
+I.3) including contingency (at 10 per cent)		
II. Project cost for each participating enterprise		
II.1. ICC for non-flammable blowing agents		
Retrofit cost	10,000	15,000
Trials	2,000	3,000
Sub-total	12,000	18,000
Contingency (at 10 per cent)	1,200	1,800
Total ICC for non-flammable blowing agents	13,200	19,800
II.2 ICC for flammable blowing agents(**) with retrofit option for use of premixed		
polyol		
Retrofit of foaming machine (polyol side) (including mix head)	70,000	85,000
Trials	2,000	3,000
Subtotal	72,000	88,000
Contingency (at 10 per cent)	7,200	8,800
Total ICC for flammable blowing agents with retrofit option	79,200	96,800
II.3 ICC for flammable blowing agents(**) with equipment replacement option		
New production equipment	120,000	150,000
Trials	2,000	
Subtotal	122,000	153,000
Contingency (at 10 per cent)	12,200	15,300
Total ICC for flammable blowing agents with equipment replacement option	132,200	165,300

(*) Does not include licensing fee, where such is required.

IOC for the participating downstream enterprises will be based on relative systems costs. These will be calculated following the first stage of the project involving the systems formulations at the systems houses.

^(**)Henncke-Krauss Maffei, Experiences and potentials in replacing rigid foam manufacturing equipment in Article 5 countries. Presented at the HCFC Technical Meeting, Montreal, 6 April 2008

ANNEX IV

DETAILED ANALYSIS ON TECHNICAL AND COSTS ISSUES RELATED TO THE REFRIGERATION SECTOR

A. INTRODUCTION

1. Annex IV is meant to provide technical and cost considerations relevant when replacing HCFC-22 in the refrigeration and air-conditioning sector with alternatives, with support by the Multilateral Fund. HCFC-22 is by far the predominant HCFCs in the refrigeration and air-conditioning sector, with an estimated share of more than 97.2 per cent of the total HCFCs consumption (metric tonnes) in the refrigeration sector. Table 1 shows the estimated HCFCs consumption in the refrigeration and air-conditioning sector by substance.

Substance	Consumption (metric	Uses	Estimated consumption in the refrigeration and A/C sector	
	tonnes)		(metric tonnes)	(% of total)
HCFC-22	247,200	Refrigeration and A/C, foam	217,610	97.2%
HCFC-123	3,700	Refrigeration and A/C	3,700	1.7%
HCFC-124	940	Refrigeration and A/C	940	0.4%
HCFC142b	31,230	Foam, refrigeration and A/C	1,640	0.7%

Table 1: Estimated HCFCs consumption in the refrigeration and air-conditioning sector, by substance

2. The Secretariat has assessed the use pattern of HCFCs in the refrigeration and air-conditioning sector. In Article 5 countries, HCFC-22 is in particular used for air conditioning and, to a somewhat smaller extent, for a wide range of applications subsumed under commercial refrigeration. There are a number of other HCFCs which feature in the refrigeration sector, in particular HCFC-123 in centrifugal chillers, and HCFC-124 and HCFC-142b in drop-in alternative refrigerants for CFC-12. Since it appears that there are no dedicated manufacturing capacities in Article 5 countries for products using these refrigerants, and since the quantities used in the servicing of refrigeration equipment are very small compared to HCFC-22, these HCFCs have not been further investigated in this paper.

3. There is insufficient consistent information available about the HCFC-22 use patterns in developing countries, in particular how much HCFC-22 consumption is associated with the different sub-sectors. Aside from issues related to the definition of sub-sectors, data which would allow an estimate is neither collected by the Fund Secretariat nor by the Ozone Secretariat, and is not available commercially or from associations. An estimate was attempted based on indicative market figures available for the trade in air-conditioning equipment in the year 2006. These figures suggest that the consumption in new air-conditioning systems might have amounted in

the year 2006 to between 80,000 and 100,000 metric tonnes of HCFC-22. The remaining consumption of about 130,000 metric tonnes might have been split approximately equally between commercial refrigeration manufacturing and service sectors.

4. This Annex will, after an introduction and a review of past experience, provide information on the different sub-sectors and some alternative technologies, before providing cost information and other considerations for the manufacturing and service sectors.

Experience

5. To date a total of 30,831.2 ODP tonnes of CFCs have been phased out from the domestic and commercial refrigeration sub-sectors through individual and umbrella projects, including 22,471.5 ODP tonnes of CFC-11 and 8,359.7 ODP tonnes of CFC-12. For some of the projects, HCFCs were used as alternatives to CFC. The refrigeration projects frequently had a component related to the insulation foam, where CFC-11 was often replaced by HCFC-141b.

6. Table 2 provides an overview of alternatives approved in Multilateral Fund conversion projects in the refrigeration manufacturing sectors, including domestic and commercial refrigeration.

Replacement	Projects	ODP tonnes	%age	ODP tonnes	
		phased out	total	phased in	
Refrigerant component					
Drop-in blend	5	137.0	1.6	2.52 (approx.)	
HCFC-22	9	818.4	9.8	45.01	
HFC-134a	439	6,188.9	74.1	0	
HFC-152a	1	80.0	1.0	0	
HFC-152a/HCFC-22	1	70.0	0.8	1.28 (approx.)	
HFC-404A	2	0.6	0.0	0	
Isobutane	22	983.3	11.8	0	
Propane	1	11.5	0.1	0	
R-401A	1	70.0	0.8	1.89	
Total refrigerant component	481	8,359.7	100.0	50.7	
Foam component					
Cyclopentane	120	14,260.9	63.5	0	
HCFC-141b	336	8,210.6	36.5	903.17	
Total foam component	456	22,471.5	100.0	903.17	

Table 2: Alternative technologies in approved stand-alone Multilateral Fund refrigeration projects

7. In addition to projects in refrigeration manufacturing sectors, 42 conversions of CFC-12 compressor production plants to alternative refrigerants in ten Article 5 Parties have been approved by the Executive Committee. Such compressor projects were supported on one hand in cases where the compressor was the technology-defining element in the production chain leading to CFC refrigeration equipment; this is often the case if small assemblers use compressors and other components to produce, frequently on site, refrigeration equipment. On the other hand

these projects were supported when compression production was integrated with equipment production, in particular in the domestic refrigeration sector. In the particular case of China, the Executive Committee agreed on a sector approach and funded the conversion of 24 compressor manufacturing enterprises to alternative refrigerants with an associated phase-out, on the understanding that the Government of China would not seek any assistance from the Multilateral Fund for the conversion of commercial refrigeration manufacturing plants. Of the 24 compressor projects in China, 18 were converted to HCFC-22 refrigerant with an associated phase-out of 361 ODP tonnes of CFC-12 (calculated phase-in: 19.86 ODP tonnes), and three were converted to HFC-134a with an associated phase-out of 253 ODP tonnes. The alternative refrigerant selected for the remaining of these 42 compressors projects were HFC-134a (18 projects), isobutane (two projects) and HCFC-22 (one project).

8. The total funding approved for stand alone training programmes for refrigeration service technicians and customs officers, recovery and recycling projects and RMPs in all Article 5 countries amounts to US \$52.7 million (i.e., US \$29.6 million for LVC countries and US \$23.1 million for non-LVC countries). An additional US \$235.0 million is associated with TPMPs for LVC countries and national/sectoral phase-out plans for non-LVC countries addressing the total remaining consumption of CFCs, mainly used in the refrigeration servicing sector¹.

B. TECHNOLOGY

Characteristics of the Air-conditioning sub-sectors

General

9. Air-cooled air conditioners ranging in capacity from 2.0 to 700 kW are used in residential and commercial applications for cooling or heating (if combined with air-conditioning heat pumps), representing probably the largest sub-sector of HCFC-22 consumption in Article 5 countries. For the purpose of this document the sub-sector is further split between unitary equipment and chillers.

Unitary equipment

10. The majority of both the existing installed capacity and new production is of the unitary equipment type. Unitary air-conditioning equipment is a broad category of air-to-air air-conditioning systems, including:

(a) Room air conditioners (window-mounted, through-the-wall and mobile units). A unit has a capacity between 2 kW and 10.5 kW and contains between 0.5 and 2 kg of HCFC-22, with an average of 0.75 kg. These units are manufactured and charged typically in large plants with quality control and leak tests, leading to low leakage rates in the order of 2.0 to 3.0 per cent of the initial charge per year;

¹ Several national phase-out plans and a few TPMPs address small amounts of CFCs used in small foam and refrigeration manufacturing enterprises or small amounts of other ODSs, mainly CTC and/or TCA.

UNEP/OzL.Pro/ExCom/55/47 Annex IV

- (b) Ductless split systems, both mini-splits for one room and larger systems, have usually multiple indoor evaporator/fan units connected to a single outdoor unit, 4 kW refrigerating capacity and above. These air conditioners have average HCFC-22 charge about 1.2 kg per system. These systems are normally produced in large manufacturing plants as well, with the associated quality control and leak tests. However, the systems are installed on-site using pre-charged lines and connectors, which lead to a higher average leak rate for these systems;
- (c) Residential split ducted central air-conditioning systems and heat pumps consist of a condensing unit (compressor/heat exchanger) installed outside of conditioned space, that supplies refrigerant to one or more indoor heat exchangers installed within the building's air duct system. The refrigerating capacity of such systems is generally between 5 kW and 18 kW containing on average about 3.25 kg of HCFC-22 per system; and
- (d) Packaged air-to-air systems and split systems for commercial air-conditioning, ranging in refrigerating capacity from 10 kW to more than 350 kW. Commercial rooftop air conditioners fall into this category. The average HCFC-22 charge is about 10.8 kg per system.

11. Representative leakage rates for the last three categories of split systems are in the literature mentioned to be 4-5 per cent of the nominal charge per year, although anecdotal evidence suggests emissions as high as 15 per cent of the annual charge. The higher leak rates are related to the limitations of installation into existing buildings, including a higher number of connections.

Chillers

12. Chillers are compact refrigeration systems designed to cool down water or a brine for the purpose of air-conditioning or, less often, process cooling for manufacturing of goods or chemicals. The cool water or brine is distributed to the cooling equipment, in case of air-conditioning to heat exchangers distributed throughout a building. The refrigerating capacity ranges from 7 kW for water cooled chillers equipped with reciprocating and scroll compressors to chillers of about 700 kW and above, which are usually built as centrifugal chillers. Centrifugal chillers, which use a turbo-compressor and have been only rarely built using HCFC-22 as refrigerant, are not considered in this document. HCFC-22 has been used for manufacturing virtually all non-centrifugal chillers with screw, scroll and reciprocating compressors. While chillers based on R134a, HFC-407C and R 410A have started penetrating the market in non-Article 5 countries, users in Article 5 countries continue to be supplied with HCFC-22 chillers. Since chillers are often manufactured and quality controlled in large plants, and since their operating conditions tend to be very favourable, chillers can last for several decades before being in need to be replaced. While the HCFC-22 needs for service and repair are normally small per system, the large number of chillers and their long lifetime prolongs the dependence of countries on HCFC-22.

Characteristics of the commercial refrigeration sub-sector

13. Commercial refrigeration systems are a broad category of refrigeration systems. The sub-sector covers refrigerated equipment found in retail food sector such as supermarkets, convenience stores, restaurants, and other food service establishments. In the context of the Multilateral Fund, every commercial use of refrigeration systems which did not belong to another sub-sector (industrial, chiller, air-conditioning, transport, domestic) was subsumed under commercial refrigeration. Commercial refrigeration systems in Article 5 countries are often locally or regionally made products, catering to the specific need of one or a small group of users. In other cases, products like water fountains, chest or bottle coolers might be produced in medium, sometimes even large quantities as commercial refrigeration products. Commercial refrigeration equipment can be sub-divided into the following broad categories: stand-alone equipment, condensing units and centralized refrigeration systems.

14. The category of stand-alone equipment consists of serial products where all the components are integrated, produced and typically charged in manufacturing facilities and plants. It includes, e.g., commercial-sized refrigerators and freezers, water coolers, chest coolers, ice cream freezers, ice making machines, display cabinets, and hotel mini bars. Currently, HCFC-22 is still widely used as the refrigerant in manufacturing of stand-alone equipment in Article 5 countries. Along with R 134a and HFC-404A, in recent years, hydrocarbons (isobutane and propane) have been introduced to the market for stand-alone units up to 1 kW capacity. The small filling and the opportunity to undertake leak testing and quality control at the manufacturers premises leads to typically reasonable or better quality of production and only relatively small leakage.

15. CFC-12 had been the most important refrigerant in stand-alone equipment in Article 5 countries. The conversion of manufacturing of stand-alone equipment in those countries to non-CFC technology has been addressed through approval of more that 260 investment projects and activities by the Executive Committee. The Secretariat has used its experience gained in reviewing the above projects in assessments of possible incremental costs related to the manufacturing of HCFC-22 – based equipment.

16. Condensing units are the main component of split refrigeration systems. Such a unit, comprising a compressor, a condenser, and a receiver holding the refrigerant in the liquid phase, is typically being pre-manufactured in medium to large quantities, but not charged. On site, such a unit is located typically in a way that the condenser can be cooled by outside air, and is connected via refrigerant-containing tubing to the cooling equipment. This may include one or several display cabinets and walk-in cold rooms or other refrigeration uses. Several condensing units can be installed side-by-side in a machinery room to cool different equipment, reaching up to 50 kW refrigeration capacity. The use of several condensing units is less energy efficient than the installation of one specifically designed centralized system, while the installation of centralized systems requires compressors of larger capacity, and more design and engineering know-how.

17. The use of condensing units is a preferred solution for many end-users in Article 5 countries because these systems are technically simple and easy to install and maintain, locally available and attractive in terms of low initial investments. HCFC-22 remains the

refrigerant of choice in manufacturing condensing units in Article 5 countries. Condensing units are suitable for HFC refrigerants, while the use of hydrocarbons is problematic because of the distance between condensing unit and equipment, which increases refrigerant filling and requires certain site-specific safety considerations.

18. Centralized refrigeration systems are similar to condensing units, only that one unit with normally several compressors serves a large number of parallel sets of cooling equipment, often on several different temperature levels. Such systems are used in particular in medium and larger super markets, to lower energy consumption and increase redundancy. In a configuration similar to the one used for HCFC-22, they are suitable for HFC refrigerants, and the use of CO_2 is under development for moderate climatic conditions. In comparison to condensing units, centralized refrigeration systems have challenging leak testing and large refrigerant filling. These make centralized refrigeration systems in their standard configuration no suitable candidate for hydrocarbon use.

19. There are alternative configurations for centralized systems which allow using refrigerants such as hydrocarbons or ammonia. One can for example use for refrigerating applications (at around 4°C) a cold brine, which reduces the amount of refrigerant and contains it in the machine room, greatly simplifying leakage and safety issues and allowing use of hydrocarbons or ammonia, but on the expense of higher investment cost, increased complexity, and an increase in energy consumption of 5 per cent to 10 per cent. It should be noted that anecdotal evidence suggests that in several industrialized countries, the overall greenhouse emissions of such a system using e.g. a hydrocarbon would still be lower than that of a standard configuration HFC-404A system, which is the commonly used non-HCFCs refrigerant for centralized systems in non-Article 5 countries. For deep-freezing applications (i.e. for keeping goods at -18°C) it is possible to use CO_2 in a cascade system, where another refrigerant provides cooling at around 4°C, and a CO₂ cycle is used in a cascade system in conjunction with another refrigerant to supply deep-freezing temperatures. The necessary know how for these systems is complex. A number of systems are running in Europe. It appears doubtful if the necessary know how and infrastructure will be available in Article 5 countries in time for any significant contribution of these technologies to the 2013 and 2015 compliance requirements.

Characteristics of other sectors

20. Decision 31/45 defined the sub-sector for assembly, installation and charging of the refrigeration equipment. This sub-sector covers activities related to installation of condensing units and centralised systems as well as the predominant part of the industrial and transport refrigeration sectors, and establishes eligibility exclusively for capital incremental costs. The guidelines contain an element relating to a cut-off date of July 1995, and might therefore be in need of endorsement should a separate cut-off date be established.

21. Since there are no indications for significant use of HCFC-22 in the industrial and transport refrigeration sectors, this document does not introduce the related sectors further.

Alternative refrigerants to HCFC-22 and suitability considerations

Introduction

22. HCFC-22 has been used since the 1930s as a refrigerant, predominantly for air-conditioning systems. It remains in this sector by far the predominantly used technology world wide until to date. When the consumption of CFC, in particular CFC-12 was reduced and subsequently phased out under the Montreal Protocol, HCFC-22 was one of several possible replacement technologies.

23. This document considers a number of alternatives for the replacements of HCFC-22, namely several HFC, ammonia, carbon dioxide and hydrocarbons. The list has been assembled using the criteria of commercial and widespread use or large scale prototype use in the field in sub-sectors with a significant use of HCFC-22 as refrigerant. Further, the criteria for technical suitability specified in the next paragraph had to be fulfilled. A number of technically possible alternatives have therefore not been included in this document because they did not fulfil these criteria. It should also be noted that these assessments, despite representing best efforts and based on broad exchange with experts, still are the result of a subjective judgement; that is similarly true for the selection of whether a refrigerant is suitable for a given application or not. The Secretariat is prepared to extend the lists of alternatives or reassess the applicability if requested by the Executive Committee.

24. To establish the technical suitability of the different alternatives, the following aspects were taken into account:

- (a) Likely availability of the refrigerant in the mid- and long term;
- (b) Suitability for the temperatures for air-conditioning, refrigerating (around 4°C) and deep-freezing (-18 °C) of food;
- (c) Available experience with the use of the refrigerants in actual applications;
- (d) Influence of the technology onto equipment cost;
- (e) Necessary requirements towards manufacturers and service companies;
- (f) Safety related aspects;
- (g) Energy consumption;
- (h) Environmental aspects;
- (i) Capability to be used at high ambient temperatures; and
- (j) Status of development and current availability of technology making the refrigerant a candidate to contribute to achieving compliance with the 2013 and 2015 HCFCs consumption reduction requirements.

25. Table 3 provides an overview of some important characteristics related to HCFC-22 and its replacements.

Refrigerant	Type and/or name	GWP (100a) ²	Safety classifica- tion ³	Tempera- ture-glide [K]	Condensing temperature at 26 bar [°C] ⁴
HCFC-22	HCFCs	1810	A 1	0	63
HFC-134a	HFC	1430	A 1	0	80
HC-290	Propane (HC)	20	A 3	0	70
HFC-404A	HFC-blend	3900	A 1	0,7	55
HFC-407C	HFC-blend	1800	A 1	7,4	58
HFC-410	HFC-blend	2100	A 1	0	43
R-417A	HFC-HC blend (Drop-in)	2300	A 1	5,6	68
R-422A	HFC-HC blend (Drop-in)	3100	A 1	2,5	56
R-422D	HFC-HC blend (Drop-in)	2700	A 1	4,5	62
HFC-507A	HFC-blend	4000	A 1	0	54
HC-600a	Isobutane (HC)	20	A 3	0	114
R-717	Ammonia	0	B 2	0	60
R-744	CO_2	1	A 1	0	-11
HC-1270	Propylene (HC)	20	A 3	0	61

Table 3: Properties of zero-ODP refrigerants and HCFC-22

Alternative refrigerants

26. For refrigeration and air-conditioning, presently the most widely used HFC options for HCFC-22 replacement in new equipment are HFC-134a, HFC-404A, HFC-407C, and HFC-410A. All these HFC and HFC blends are non-toxic, non-flammable and require the use of different compressor lubricants as compared to HCFC-22 to ensure satisfactory operation and durability; typically, these are synthetic polyolester-based (POE) oils. These lubricants have a higher cost than those used for HCFC-22, and need more careful handling to avoid contamination. The related issues (training and equipment needs) are known from the introduction of HFC-134a into the market as part of the CFC-12 phase-out efforts. Due to incompatibility with the oils used for HCFC-22, the need for a new lubricant also implies that

² According to the 2006 Report of the Refrigeration, Air-conditioning and Heat Pumps Technical Options Committee

³ Toxicity:

Class A: refrigerants for which toxicity has not been identified at concentrations less than or equal to 400 ppm; Class B: refrigerants for which there is evidence of toxicity at concentrations below 400 ppm.

Flammability: Class 1: no flame propagation; Class 2: lower flammability limit of more than 0.10 kg/m3 and heat of combustion of less than 19 kJ/kg; Class 3: lower flammability limit of less than or equal to 0.10 kg/m3 or a heat of combustion greater than or equal to 19 kJ/kg

⁴ Common upper working pressure for refrigeration equipment

these refrigerants cannot be used as drop-ins for existing equipment, but would require a complex retrofit procedure in order to be used in existing equipment. In comparison to HCFC-22, the HFC and HFC blends mentioned have the following characteristics:

27. HFC-134a is globally available, and can be used for refrigerating at around 4° C in commercial refrigeration, in small units (up to 2 kW to 4 kW capacity) for commercial refrigeration / deep-freezing and for smaller room air conditioners, as well as where previously CFC-12 has been used and where HCFC-22 has been only an interim solution. There is considerable practical experience in its application in Article 5 countries. In comparison to HFC blends and propane / propylene, HFC-134a requires larger compressors and larger tubing. The energy consumption is similar to HCFC-22 equipment, while the direct greenhouse gas emissions are expected to be lower due to lower GWP, lower pressures and lower risk of pressure oscillations in the tubing⁵. HFC-134a is suitable for very high ambient temperatures.

28. HFC-404A and HFC-R507A are very similar and can therefore be assessed jointly. Both refrigerants have been used in non-Article 5 supermarkets for a number of years and are well suited for refrigerating and deep-freezing applications, in particular in condensing units and centralized commercial plants. While the medium term availability is certain because of the needs of the installed equipment base and the continuous use of these refrigerants, the long term availability depends strongly on the policies regarding industrial greenhouse gas emissions since both substances have a particularly high GWP. The costs of assembly of centralized commercial plants using R404A/R507A are similar to HCFC-22, while the costs for refrigerant and refrigeration oil are higher. In order to use these refrigerants in on-site installations, experience to reduce pressure oscillations in high pressure tubing are meaningful. The energy consumption is slightly higher than with HCFC-22 equipment for refrigerating, slightly lower for deep-freezing. The high GWP leads to a higher emission of greenhouse gases as compared to HCFC-22. In case of very high ambient temperatures the equipment might have to be built for higher than standard working pressures.

29. HFC-407C is a refrigerant with a significant temperature glide and is therefore not suitable for equipment with a large refrigerant filling or accumulators, such as condensing units, centralized systems and certain chillers; in other applications, the temperature glide still needs to be taken into consideration in design and service. It is widely used in Europe as HCFC-22 replacement in air-conditioning equipment, and will therefore likely be available in the medium to long term. The costs of manufacturing HFC-407C equipment are very similar to the costs for HCFC-22 equipment except for the higher costs for refrigerant and refrigeration oil. In case of very high ambient temperatures the equipment might have to be built for higher than standard working pressures. The GWPs of HCFC-22 and HFC-407C are similar, therefore the overall emissions of greenhouse gases attributed to the equipment should remain similar.

⁵ Pressure oscillations on the high pressure side of refrigeration equipment depend on the outdoor temperature and can lead to vibrations, resulting potentially in material fatigue of the tubing and subsequent ruptures. These might take place after a relatively short operating time of some days, and would lead to the emission of the full refrigerant charge. As compared to HCFC-22, the risk increases with HFC-404A and HFC-507A, and increases further with HFC-410A. A trial and error approach to avoid these risks can be used for equipment produced in a series. For on-site installations, experience, training and marksmanship of the technician are the factors reducing the risk of such ruptures.

30. HFC-410A is a commercially available refrigerant blend used in newly designed air-conditioning equipment, which has been commercially available within the capacity range of 2 kW to 175 kW from major manufacturers for a number of years. It seems likely that this refrigerant will be available in the medium to long term. The high refrigerating capacity permits often small, more compact components to be used. A typical hermitic or semi-hermetic compressor designed for HCFC-22 cannot be used with HFC-410A, which might also be true for some other components in the system. The costs information provided for HFC-410A systems suggests a cost increase for the components, which might also include costs for design upgrades independent of the refrigerant. While the higher operating pressure can be addressed in the design of new systems, this refrigerant is inappropriate for retrofit of existing HCFC-22 systems. Units using HFC-410A have demonstrated higher energy efficiency than HCFC-22 units; it should be noted that this might include the effort of optimisation of components and upgrading of technology as part of the development of newly designed systems. HFC-410A is not universally accepted for use in high ambient temperatures due to its elevated pressures and relatively low critical point, which might lead to lower energy efficiency at such temperatures as compared to e.g. HFC-134a or HC-290.

HFC-417A, HFC-422A and HFC- 422D are relatively recent developments based on 31. HFC mixtures with some isobutane, allowing drop-in conversion of existing HCFC-22 refrigeration equipment, using the same refrigeration oil. They are unlikely to find widespread use for new refrigeration equipment due to certain compromises regarding their overall properties and performance. These HFC refrigerants have a temperature glide and are therefore not suitable for equipment with large refrigerant filling or accumulators, such as condensing units, centralized systems and certain chillers. HFC-422A can be used for refrigerating and deep-freezing, HFC-417A and HFC-422D for refrigerating. The practical experiences with all three refrigerants are so far very limited. Experience of service technicians with refrigerants with temperature glide is necessary. In case of very high ambient temperatures the equipment might have to be built for higher than standard working pressures; the GWPs of all three refrigerants is higher than that of HCFC-22. It should be noted that despite wide encouragement, drop-in replacements for CFC-12 have established themselves only in very few markets in Article 5 countries, therefore the situation with drop-in replacements for HCFC-22 might well be similar. Consequently, the short-term availability for specific markets is not known, and the availability of these fluids beyond the mid-term remains unlikely due to their transitory nature.

32. Ammonia, NH3 (R717) has been used for more than 100 years as refrigerant, and is common in many countries in large industrial and food processing applications. It is toxic, but usually easily avoidable because of its stench well below the toxicity level. Due to their capacity and specific characteristics, these applications fall under the sub-sector "industrial refrigeration", not commercial refrigeration. Since industrial refrigeration has not systematically used HCFC-22 as refrigerant, it is not further assessed as part of this paper, although it should be noted that the use in industrial refrigeration ensures the refrigerants long-term availability. Ammonia as refrigerant is suitable for refrigeration plants and in large chillers; the refrigerant is less well suited for deep-freezing temperatures. The installation costs of ammonia plants are significantly higher than for HCFCs or HFC plants, since parts, assembly and the necessary brine cycles and require different and more complex manufacturing skills, in particular welding. According to experts,

there is some possibility that ammonia could extend from the industrial refrigeration sector into chillers or the commercial refrigeration sector, but only if the technology has already a strong technician base in the country. Despite the good energetic performance characteristics for most except very hot climates, the need to use brines increases energy consumption as compare do HCFC-22 direct cooling applications. Since ammonia has a GWP of 0, the overall greenhouse gas emissions are usually more favourable than with HCFC-22.

HC-290 (Propane), HC-1270 (propene) and HC-600a (isobutane) are hydrocarbons and 33. have in several aspects similar characteristics. Isobutane is suitable for small stand-alone refrigerating units, HC-290 and HC-1270 both for refrigerating as well as for deep-freezing applications in stand alone units up to about 1 kW refrigeration capacity and in centralized supermarket systems using brines. While as such very good refrigerants, the flammability of these substances is a problem which requires additional efforts in design, manufacturing and service of the equipment. The flammability leads to a tendency to use hydrocarbons only in small or equipment with relatively small refrigerant filling, or in systems where a brine is being used. While for the production of stand-alone equipment the safety requires only limited efforts and therefore the associated costs are also limited, centralized equipment leads to substantially higher investment costs for the brine cycle and the safety equipment, and requires a high degree of experience with flammable substances. The energy consumption for stand-alone units tends to be similar or lower than with HCFC-22, while for the centralized systems the brine cycle leads to increased energy demand as compared to HCFC-22. The overall climate impact is likely to be lower than with HCFC-22 equipment, in case of stand-alone equipment significantly lower. HC-290 is also well suited for high ambient temperatures.

34. Carbon dioxide, CO₂, as refrigerant has been used in a limited number of centralised commercial systems, also in food processing, and on a medium scale in light commercial applications (vending machines) and for hot water heat pumps. It is suitable both for refrigerating and deep freezing applications. For deep freezing the refrigerant can be used in a cascade system, limiting the working pressures of the equipment. Should the condenser of CO₂ equipment be cooled with ambient air, then working pressures will be above 75 bar and different components will be needed. For outdoor temperatures above approximately 20°C for larger, centralised systems and above 32°C for smaller systems, the energetic performance of CO₂ equipment is lower than HCFC-22 equipment. Its performance tends to decrease more rapidly with increasing temperatures, which can lead in warmer climates to significantly higher annual energy consumption as compared to HCFC-22. From preliminary assessments it appears that the overall climate impact of CO2 refrigeration systems in warm climates might be significantly worse than that of HCFC-22 systems. The optimisation of this new technology and the measurements regarding its energy efficiency are still ongoing, therefore a final assessment of its climate impact in warm climates can not be made at this point in time. Since the working principle differs significantly from that of other refrigerants, and because of the very high working pressures about six times above those for HCFC-22, manufacturing and service has to undergo major changes in equipment, practices and know-how in order to use this technology. A component supply base does not currently exist for manufacturing CO₂-based air-conditioning systems, and therefore the costs for CO₂ equipment other than cascade systems for centralised commercial-refrigeration systems is presently significantly higher than for HFC or HCFCs systems; this is expected to change should there be market acceptance, subsequently leading to

high quantities of standardized components. Cascade systems might have similar costs as HCFC-22 systems.

35. Due to the low performance in warm climates for air cooled systems, the limited applicability for centralized cascade systems in Article 5 countries, and the only slowly emerging market for components, CO_2 as a replacement for HCFC-22 has been seen as unlikely to contribute to reaching the 2013 and 2015 compliance requirements and has therefore not been considered in the costing part of the document.

Suitability overview

36. It appears that at least for the initial stage of HCFCs phase-out, the above presented alternatives will represent all of the potential choices. Developments are reported for some low GWP refrigerants with no flammability and low toxicity, but presently it remains unclear when these will be available and if they will actually eventually be commercialised. CO_2 is under development as an alternative refrigerant for the last 20 years, and is presently used in demonstration trials. It remains unclear if and under which circumstances it will be used on a larger scale, since it has fundamentally different design, component and, in particular, service characteristics than other refrigerants. The analysis of the above factors will lead to the selection of the appropriate technology by the different manufacturers in Article 5 countries. Table 4 shows an indication for the suitability of alternative refrigerants for widespread use in new equipment in Article 5 countries; the use of the transitory drop-in refrigerants HFC-417A, HFC-422A and HFC- 422D has not been considered since they are meant to be used in existing, not new equipment. The typical applications for HC-1270 and HC-600a do presently not appear to be manufactured on a significant scale in Article 5 countries; therefore they are not further shown in Table 4.

	Suitability of alternative refrigerants for widespread use in						
		new equipment (indicative only)*					
	HFC-	HFC-	HFC-	HFC-	HC-	R-717	CO_2
	134a	404A /	407C	410A	290	Ammonia	
		507A					
Commercial							
Commercial stand-alone	+	+	0	0	+	-	о/-
Commercial condensing	+	+	+/0	0	-	-	-
Commercial centralized	+	+	0	0		o/-	-
systems							
Commercial deep	-	+	-	0	-	-	-
freezing - one stage							
Commercial deep	-	+	-	0	-	-	0
freezing - two							
stage/supermarket							
Air-conditioning							
Room A/C	0	-	+	+	+	-	-
Ductless split systems	0	-	+	+	o/-	-	-
Residential split ducted	0	-	+	+	o/-	-	-
central air-conditioning							
systems							
Packaged air-to-air	-	-	+	+	-	-	-
systems and split systems							
for commercial air-							
conditioning							
Small chiller (scroll)	-	-	+	+	o/-	-	-
Large chiller (screw)	+		+/0	+	-	+	-

Table 4: Suitability of alternative refrigerants for widespread use in new equipment in Article 5 countries

*The symbols denote that, according to this preliminary assessment, the different technologies are: +: from a technical perspective suitable or even preferable to be employed widely; o: from a technical perspective not well suited, but can be employed if certain disadvantages are accepted; -: Hardly possible to employ, or can be employed only with significant economic, technical or use limitations

37. It should be noted that systems using a secondary fluid have relatively poor performance at low (deep freezing) temperatures. This lead to a lower assessment for a number of systems with HC-290 and R-717 (ammonia) for supermarkets.

C. GENERAL ISSUES RELATING TO INCREMENTAL COST IN THE REFRIGERATION SECTOR

38. The Multilateral Fund has assisted many domestic refrigerator and freezer companies and a number of commercial refrigeration companies in Article 5 countries in converting their manufacturing process to HFC-134a and hydrocarbon refrigerants within the stand-alone projects. The experience gained in the review of such projects formed the basis for the following first assessment of the incremental costs associated with the phase-out of the use of HCFC-22 in the manufacturing of refrigeration and air-conditioning equipment.

UNEP/OzL.Pro/ExCom/55/47 Annex IV

39. This assessment had to be developed based on a limited set of information. The incremental capital costs for an individual project are typically influenced by:

- (a) The existing equipment in a manufacturing facility; or alternatively
- (b) What could be expected as a minimum to be existing;
- (c) The need of upgrade or replacement of or amendment to this equipment; and
- (d) The cost of the associated activities, in particular the costs for hardware.

40. At the present point in time, information is not accessible about typical levels for the first three factors. In order to overcome this shortcoming, the Secretariat decided to define model enterprises, meant to represent what might turn out to be typical conversion cases for the different sub-sectors, or what might demonstrate the level and spread of costs for conversions. Consequently, the calculation of incremental costs in the refrigeration manufacturing sector in Article 5 countries has been undertaken on the basis of model enterprises in the sub-sectors air-conditioning, chiller and the commercial sector. Each of these activities, sectors and sub-sectors had to be considered individually to make it possible to apply existing Executive Committee policies for better presentation of associated incremental costs.

41. This first attempt to calculate incremental costs has focused on what was perceived to be likely refrigerant choices while at the same time representing cost issues which could be, if needed, relatively easily be transferred to several other refrigerants. The refrigerants choices assumed when calculating incremental cost were HFC-410A, HFC-407C and HC-290 (propane) refrigerants.

42. A higher significance than expected is associated with the incremental operating costs, which are paid based on the incremental, eligible cost difference in the operating cost of the manufacturing plant and are therefore proportional to the duration for which they are being paid. The Executive Committee defined different durations for the incremental operating costs for different sectors and sub-sectors. These ranged from zero months to 48 months; guidelines assigned duration to the commercial sector of 24 months, but the decision specified that guidelines would not be valid for HCFCs phase-out projects. For the air-conditioning and chiller sub-sectors, durations were never determined. Therefore, for the refrigeration and air-conditioning sector all incremental operating costs per annum, of to allow easy conversion to any duration of incremental operating costs that the Executive Committee might consider. The Secretariat would like to explicitly point out that this is the exclusive reason to show this specific duration, and that there is no reason to prefer this duration to any other duration the Executive Committee might wish to consider.

43. It should be noted that for the refrigeration and air-conditioning sub-sectors, the estimation of incremental operating costs at the present time associated with very high uncertainties is highly problematic. While in this paper significant efforts have been undertaken to arrive at realistic estimates, e.g. by using historical data, the error margin in the estimates of incremental operating costs for this Annex remains significant, and the values should only be

looked at as indicative. Better data will only be available once the Secretariat can actually fully assess cost data, e.g. during the review of a project proposal.

44. It should be noted that for the use of several alternative technologies, calculation of incremental operating costs for components (compressor, heat exchangers, etc.) in the context of this paper cannot sufficiently take into account the issue of energy efficiency. For example, for the new technology of HFC-410A, the technological gap between previous (HCFC-22) designs and the newly developed (HFC-410A) technology is considerably larger than in the case of CFC-12 to HFC-134a. In order to achieve comparable energy efficiency, or to increase energy efficiency, the balance between the characteristics of the various components need to be established anew, and changes in several components might be necessary. For the purpose of this paper, cost-effective solutions with an assumed likeliness of achieving similar energy efficiency have been used, based on discussions with experts. However, this presents a considerable uncertainty because of two reasons:

- (a) The actual costs experienced and reported in publicly accessible documentation combine costs related to the conversion with the cost for technological upgrades. It is difficult to separate out the different cost elements, in particular because the cost know-how forms an important part of the intellectual property of an enterprise; and
- (b) Paragraph 11 (b) of decision XIX/6 of the Meeting of the Parties requested the Executive Committee, when developing and applying funding criteria for projects and programmes, to give priority to cost-effective projects and programmes which focus on, *inter alia*, substitutes and alternatives that minimize other impacts on the environment, including on the climate, taking into account global-warming potential, energy use and other relevant factors. As pointed out above, conversions which did take place in Article 5 countries for export to non-Article 5 countries have achieved gains in energy efficiency on the expense of higher operating costs. It remains so far unknown whether and how the Executive Committee will deal with the issue of incremental operating costs if those are related to, *inter alia*, energy efficiency improvements.

45. The incremental cost of compressor is an important component of overall production cost. The Executive Committee dedicated a great deal of attention to the issue of incremental cost for compressors while dealing with CFC phase-out in the refrigeration sector. The existing policy allows an Article 5 country to claim either incremental operating costs of the compressor or the cost of conversion of its compressor manufacturing facilities, or both on a proportional basis. The Article 5 country has to make a decision regarding its approach and inform the Executive Committee. Currently, several Article 5 countries have compressor production facilities for air-conditioning equipment. Related compressor manufacturing conversion costs are not assessed in this paper.

Incremental cost in manufacturing room and mini-split air-conditioning units

46. As an example, a hypothetical conversion of a production line manufacturing 250,000 units per year of room/mini-split air-conditioners of 4 kW cooling capacity has been

considered for calculation of incremental capital costs and incremental operating costs, assuming a conversion to HFC-410A, R-407C and R-290 (propane) refrigerants. It is assumed that production is set up for three shifts, 250 working days in a year. All the costs are estimates made on certain assumptions and judgments on the basis of experience from conversion from CFC-12 to HFC-134a in the domestic refrigeration sector.

Conversion to HFC-410A refrigerant technology

47. Incremental capital costs associated with the replacement and/or adaptation (retrofit) of production equipment will not vary significantly in production of room and split ductless air-conditioning units. Therefore, these two categories of product are considered as one case study. Incremental capital costs are related to the cost of model redesign, investment in new refrigerant and leak detecting equipment, retooling of the production line, including adaptation of the evacuation system, technology transfer, training, commissioning and engineering. Incremental capital costs are calculated in the range of US \$275,000 (Scenario 1) to US \$950,000 (Scenario 2) depending on the availability of the new design, the baseline and set-up of the production line.

48. Incremental operating costs (IOC), however, are closely related to the capacity of the air-conditioning units increasing with higher capacity due to the increased size and cost of the compressor, amount of the refrigerant charge and additional material used. Incremental operating costs will need to be adjusted to reflect particular characteristics of the manufactured product. Incremental operating costs in the manufacturing of ducted commercial and packaged air conditioners may be significantly different from residential air conditioners. The border line between residential and commercial applications is established by ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) at 19 kW of cooling capacity. These units are being typically installed by contractors, including the charging of the system after the ducting and piping was completed according to the customer requirements. While the manufacturer therefore does not incur incremental costs associated with higher priced refrigerant, there is incremental cost associated to the higher price of compressors.

- 49. Incremental operating cost is calculated on the basis of the following assumptions:
 - (a) The average charge in the room air-conditioner is 1.35 kg of HCFC-22 similar to the charge used in the HCFCs Study for China;
 - (b) The baseline cooling capacity is 4 kW;
 - (c) The price of HCFC-22 is US \$1.4/kg (HCFCs Study for China);
 - (d) The charge of HFC-410A will be 10 per cent less than the baseline (1.21 kg);
 - (e) The price of HFC-410A is US \$13.8/kg (HCFCs Study for China);
 - (f) Savings in the cost of material due to reduction in size of heat exchanger are estimated and included;

- (g) Incremental cost of compressor is estimated at US \$5.00 on the basis of consultations with industry experts (Scenario 1). The incremental cost of compressor in the HCFCs Study for China is calculated as a surplus of US \$27.62 in the price of HFC-410A/HFC-407C compressor over the average price of HCFC-22-based compressor (Scenario 2); and
- (h) Estimated savings due to size reduction of heat exchangers by 3 square feet, resulting in savings of US \$10.00.

50. The energy efficiency ratio (EER) of HFC-410A-based unit exceeds the EER of a HCFC-22 unit by about 5 per cent (an average conservative estimate). There is a potential for further improvements in the system efficiency and costs through use of smaller diameter tubes, use of micro-channel technology, additional compressor optimization and reducing of charge. Energy savings have not been calculated as part of incremental operating costs.

51. Incremental operating costs for duration of 12 months will range from US \$2,660,000 (Scenario 1) to US \$8,320,000 (Scenario 2). The following table shows the results of calculations of incremental costs:

Table 5: Incremental cost of conversion of the production line of 250,000 unit per year to HFC-410A refrigerant (estimate)

Category of incremental cost (US \$)	Scenario 1	Scenario 2
Incremental capital cost	275,000	950,000
Incremental operating cost/year	2,660,000	8,320,000

Conversion to HFC-407C refrigerant technology

52. Since the working pressure of HFC-407C is very close to HCFC-22 refrigerant, only minor changes are expected in the design of the product and the manufacturing process. Incremental capital costs associated with the replacement and/or adaptation (retrofit) of production equipment will not vary significantly in production of room and split ductless air-conditioning units. The incremental capital costs for conversion of a production line of 250,000 unit/year capacity to HFC-407 blend have been calculated to be within the range of US \$190,000 to US \$250,000, depending on the local availability of testing facilities at the enterprise. For comparison, the incremental cost of conversion (rebuilding) of the production line of 500,000 unit/yr capacity to HFC-410A/HFC-407C refrigerants is estimated to be US \$104,000 in the HCFCs Study for China, excluding costs of model redesign.

53. Incremental operating costs for the category of room and split ductless air-conditioning products is calculated on the following assumptions:

- (a) The average charge in the room air-conditioner is 1.35 kg of HCFC-22 similar to the charge used in the HCFCs Study for China;
- (b) The baseline cooling capacity is 4 kW;

- (c) The price of HCFC-22 is US \$1.4/kg (HCFCs Study for China);
- (d) The charge of HFC-407C will be 5 per cent less than the baseline (1.28 kg);
- (e) The price of HFC-407C is US \$10.77/kg (HCFCs Study for China); and
- (f) The incremental cost for HFC-407C compressor of US \$5.0/unit has been used in the incremental operating costs calculations as an indicative only. HCFCs Study for China indicates to a significantly higher surplus of R407C compressor over HCFC-22 compressor. This scenario has not been considered. The existing price difference for HCFC-22 and HFC-407C compressors needs further investigation.

54. The annual incremental operating costs will be US \$4,250,000. Table 6 shows calculations of incremental costs:

Table 6: Incremental cost of conversion of the production line of250,000 units per year to HFC-407C refrigerant (estimate)

Category of incremental cost (US \$)	Scenario 1	Scenario 2
Incremental capital cost	190,000	250,000
Incremental operating cost/year	4,250,000	4,250,000

Conversion to hydrocarbon alternative technology

55. For the purpose of calculation of incremental costs, the conversion of production of a small room air-conditioner of 1 kW cooling capacity is considered from HCFC-22 to HC-290 (propane) refrigerant. The refrigerant charge would be about 150 g which might be acceptable in some countries meeting the established safety standards. The capacity of a production line is assumed to be 250,000 units a year. It is assumed that compressors equipped with the necessary electrical features are commercially available.

56. The incremental capital costs will cover the cost of model redesign or alternatively the technology transfer fee, new refrigerant charging boards incorporating the necessary safety features, a refrigerant transfer system, the installation of gas detecting and ventilation systems, new leak detectors, refrigerant storage, training and safety inspection. Incremental capital costs are calculated within the range of US \$545,000 and US \$670,000.

57. Incremental operating costs for the small room air-conditioner are calculated on the following assumptions:

- (a) The average charge in the room air-conditioner is 1.0 kg of HCFC-22;
- (b) The baseline cooling capacity is 1.0 kW;
- (c) The price of HCFC-22 is US \$1.4/kg (HCFCs Study for China);
- (d) The charge of HC-290 will be 0.15 kg;

- (e) The price of HC-290 (refrigeration grade) is US \$27.6/kg (HCFCs Study for China). The high price of refrigeration grade propane in China is due to low demand and is likely to be substantially reduced in the future if R290 technology is widely accepted and commercially used;
- (f) The incremental cost of the HC-290 compressor plus the incremental cost to upgrade electrical components to meet safety requirements amount to US \$15/unit, based on information received by a manufacturer; and
- (g) The incremental operating costs for duration of 12 months amounts to US \$4,312,000.

58. The result of an estimation of the total incremental cost of the conversion of a production line of 250,000 units' capacity to R290 refrigerant is shown in Table 7.

Table 7: Incremental cost of conversion of the production line
of 250,000 unit per year to HC-290 refrigerant (estimate)

Category of incremental cost (US \$)	Scenario 1	Scenario 2
Incremental capital cost	545,000	670,000
Incremental operating cost/year	4,312,000	4,312,000

Conversion of manufacturing of ducted commercial and packaged air-conditioners

59. Incremental capital costs have been calculated for the conversion of a manufacturing facility producing 1000 units of ducted split residential and commercial air conditioners of an average 15 kW cooling capacity and 100 units of packaged commercial units of 70 kW cooling capacity. Two HFC alternative refrigerants are considered: HFC-410A and HFC-407C. Ducted commercial and packaged air-conditioners are being typically installed by contractors with charging the system after the ducting and piping was completed according to the customer requirements

Conversion to HFC-410A refrigerant technology

60. Incremental capital costs for conversion of a production line of ducted commercial and packaged air conditioners to HFC-410A refrigerant primarily will involve costs associated with redesign, prototyping, pilot scale production and test trials to accommodate a higher working pressure of a new refrigerant in the design as well as cost for retooling, leak detector, and adaptation of the evacuation system. No or low cost will be associated with refrigerant charging equipment since no refrigerant charging operations are entailed on a production site.

61. The incremental capital costs are estimated to be in the range of US \$145,000 and US \$245,000.

62. The manufacturer will not incur incremental costs associated with higher priced refrigerant. There will be savings in the cost of heat exchanger material. The incremental cost for compressors, new filter/dryer and new expansion valve will be part of the incremental operating

UNEP/OzL.Pro/ExCom/55/47 Annex IV

costs. The incremental operating costs for both parts of production are estimated to be US \$36,000. The results of an estimation of the incremental costs are shown in the following table.

Table 8: Incremental cost of conversion of manufacturing of ducted
commercial and packaged air-conditioners to HFC-410A

Category of incremental cost (US \$)	Scenario 1	Scenario 2
Incremental capital cost	145,000	245,000
Incremental operating cost/year	36,000	36,000

Conversion to HFC-407C refrigerant technology

63. Since the working pressure of HFC-407C is very close to HCFC-22 refrigerant, there are limited changes in the design of the product and the manufacturing process. This factor might be especially important for conversion of the higher capacity range equipment. The incremental capital costs are calculated to be in the range US \$80,000 to US \$100,000.

64. Incremental operating costs involve higher price of compressors, and a new filter/dryer, amounting to US \$30,000. The incremental costs are shown in the following table.

Table 9: Incremental cost of conversion of manufacturing of ducted commercial and packaged air-conditioners to HFC-407C (estimate)

Category of incremental cost (US \$)	Scenario 1	Scenario 2
Incremental capital cost	80,000	100,000
Incremental operating cost/year	30,000	30,000

Chillers

Conversion of manufacturing of chillers to HFC-410A refrigerant

65. The conversion of the manufacturing line of HCFC-22 500 kW water cooled chillers equipped with screw compressors is considered as an example. The direct expansion evaporator is assumed to the part of the system design. The alternative refrigerant is HFC-410A. The annual output is assumed to be 200 units.

66. Incremental capital costs for conversion of a production line of screw chillers of 500 kW capacity has been calculated using assumed costs since the Secretariat has never assessed the conversion of chiller production. The incremental capital costs include the cost of redesigning, prototyping, pilot scale production, test trials, set of equipment for manufacturing the HFC-410A prototype and training. The incremental capital costs are estimated between US \$80,000 and US \$300,000 depending on the source of the new design.

67. These units are typically being installed by contractors, with charging of the system after the ducting and piping is completed according to the customer's requirements. Therefore, the manufacturer does not incur incremental costs associated with higher priced HFC-410A

refrigerant. The incremental cost for compressors is the major incremental operating cost item. In manufacturing of units of about 500 kW cooling capacity, the components will need to have a higher pressure rating than for HCFC-22. This moderate additional cost is likely to be offset by the lower cost for the screw compressor. The total incremental operating costs per unit for this category of air-conditioning will therefore be likely zero. Consequently, the annual incremental operating costs resulting from conversion of production of 200 units would be also zero. The incremental costs are shown in Table 10.

Table 10: Incremental cost of conversion of manufacturing of ducted commercial and packaged air-conditioners to HFC-407C (estimate)

Category of incremental cost (US \$)	Scenario 1	Scenario 2
Incremental capital cost	80,000	300,000
Incremental operating cost/year	0	0

Commercial refrigeration - stand-alone equipment

68. As an example, the incremental cost has been calculated for the conversion of manufacturing of stand-alone commercial-sized freezers of 1.0 kW cooling capacity to HFC-404A refrigerant and beverage vending machines to propane refrigerant.

Conversion of manufacturing of stand-alone commercial-sized freezers to HFC-404A refrigerant

69. HFC-404A is presently the preferred choice for medium and low temperature applications. The conversion of a production line of 10,000 units per year will entail capital incremental cost for model redesign, prototype trials, a new refrigerant charging board, a leak detector, adaptation of the vacuum system, training and technical assistance amounting to US \$66,000. Incremental operating costs will cover the additional cost of new refrigerant with the charge 0.75 kg/unit, compressor, capillary, and filter/dryer, amounting to US \$140,000 per year.

Conversion of manufacturing of small stand-alone commercial-sized freezers to R-290 (propane) refrigerant

70. HC-290 (propane) can be a choice in manufacturing of small commercial-sized freezers. HC-290-based compressors are commercially available which are capable to provide up to 0.5 kW cooling capacity at evaporator temperature of -30 C. The refrigerant charge will not exceed 0.15 kg determined as a safety threshold in such appliances by international regulations. The conversion of a production line of 10,000 units per year will cover capital incremental cost for model redesign associated with safety requirements, prototype trials, a new refrigerant charging board designed for safe handling of flammable refrigerant, a new leak detector, safety features in the production area, safety inspection, training and technical assistance amounting to about US \$320,000. The incremental operating costs will cover the additional cost of a refrigerant charge of 0.15 kg/unit, compressor, incremental and the cost of specific electrical components. On that basis the incremental operating cost is estimated to be within the range of US \$230,000.

Conversion of manufacturing of beverage vending machines to isobutane (R-600a) refrigerant

71. Beverage coolers and small commercial refrigeration equipment based on hydrocarbon (HC) refrigerants such as isobutene (HC-600a), propane (HC-290) or HC blends have been developed in several non-Article 5 countries. Through developmental efforts, it was possible to reduce the refrigerant charge to limits required by safety standards in several non-Article 5 countries. An example of conversion of a manufacturing facility with an annual output of 10,000 units was used for the calculation of incremental cost. The cooling capacity of the refrigeration system is assumed to be 0.25 kW with the refrigerant charge of 0.25 kg.

72. The incremental capital costs will cover the cost of model redesign or alternatively a technology transfer fee, new refrigerant charging boards incorporating the necessary safety features, a refrigerant transfer system, the installation of gas detecting and ventilation systems, new leak detectors, refrigerant storage, training and safety inspection. The incremental capital costs are estimated to be within the range of US \$500,000 to US \$800,000.

73. The incremental operating costs will be associated with the higher price of the refrigerant, new compressor and the cost of safety features in the design. The overall incremental operating costs will be dependent on the source and availability of hydrocarbon compressors and refrigerant. The annual incremental operating costs will be in the range US \$150,000 to US \$200,000.

Table 11: Incremental cost of the conversion of manufacturing of beverage vending machines to isobutane (R-600a) refrigerant

Category of incremental cost (US \$)	Scenario 1	Scenario 2
Incremental capital cost	500,000	800,000
Incremental operating cost/year	150,000	200,000

Commercial refrigeration - condensing units

74. Currently, HFC-404A is the leading choice of refrigerant in manufacturing new condensing units. HFC-134a is also used mainly for medium temperature applications. The incremental capital costs are estimated for the conversion of a production line of 5,000 condensing units a year. The cost will be associated with the redesign and testing of the new product and the cost of new production equipment and retraining the personnel to handle more hygroscopic lubricant. It is assumed that middle-sized companies have the in-house technical expertise to cope with the redesign challenge. The estimated cost is within the range of US \$55,000 and US \$60,000, depending on the baseline.

75. In order to be eligible for both capital and operating costs from the Multilateral Fund, the production at the particular enterprise needs to be recognized as one belonging to the manufacturing sector. In its decision 31/45, the Executive Committee established Guidelines for definition of the sub-sector for assembly, installation and charging of the refrigeration equipment and the calculation of incremental operating costs. It is assumed that the company is considered under the rules pertaining to the commercial refrigeration sector and eligible for incremental operating costs. The cooling capacity of condensing units varies from 1 kW for deep freeze

applications to 20 kW. For this cost estimation, the assumed compressor size is sufficient for a refrigeration capacity of 5 kW, and the average charge to be 5 kg per system. The incremental operating costs for one year duration are estimated in the range of US \$390,000 to US \$415,000 depending on the source of supply of new compressors. Table 12 presents the results of the estimation of incremental costs.

Table 12: Incremental cost of the conversion of the manufacturing of commercial refrigeration – condensing units (estimate)

Category of incremental cost (US \$)	Scenario 1	Scenario 2
Incremental capital cost	55,000	60,000
Incremental operating cost/year	390,000	415,000

D. SERVICE SECTOR

General considerations

76. Consumption of HCFC-22 in the service sector is likely to take place in every Article 5 country that has HCFC-22 equipment. In particular, HCFC-22 room air conditioners can be assumed to exist in every but very few countries. Therefore it is safe to assume that, with potential minor exceptions, every Article 5 country uses HCFC-22 for servicing.

77. On an enterprise basis, the distinction between the service sector and the sub-sector for assembly, installation and charging of the refrigeration equipment is very blurred; even the distinction to the commercial refrigeration manufacturing sector is not always clear. It can be assumed that a large number of smaller enterprises fall into service sector as well as into one or both of the other categories and are likely to be addressed only through service sector activities such as training and equipment support. Service sector activities were for most Article 5 countries addressed together with awareness, legislative and enforcement activities in RMPs and TPMPs. This section of Annex IV is therefore also covering to some degree those activities.

78. The service sector is particular in its very broad spectrum of enterprises covered, their often informal structure, the large amount of enterprises and the small consumption per enterprise. The service is predominantly performed at the customers' site, i.e. not at the premises of the service enterprise. Contrary to activities in the manufacturing sector, where the ODS consumption of the beneficiary can be monitored, these characteristics make it virtually impossible to monitor whether an enterprise phased out the use of HCFCs; the problem that their customers might be dependent on continued use of HCFCs in the service of their equipment is a sub-set of this issue. Experience indicates that instead of direct phase-out enforcement, refrigerant supply and, in particular, refrigerant costs are the main drivers leading to phase-out of ODS use in the service sector.

79. Experience in the phase-out of CFCs suggests that if refrigeration manufacturing enterprises and the service sector compete for a limited supply of refrigerant, the service sector is likely to be able to pay higher refrigerant costs since it is easier to pass the costs onto the consumer. This might indicate that in countries where both HCFC-22 refrigeration manufacturing and servicing sectors are present, the contribution of the service sector for phase-out will initially be low, and phase-out will predominantly be achieved in the

manufacturing sectors. This is particularly important when planning phase-out activities to meet the compliance targets of 2013 and 2015, and might lead to a differentiation in activities in the service sector between countries with and without a HCFC-22 refrigeration manufacturing sector.

80. Approaches to reduce supply are performed on a national level by restricting imports or requesting that a certain minimum amount of ODS produced has to be exported. Such restrictions on the national level have become increasingly effective in the last few years. Verification reports reviewed by the Secretariat demonstrate significant improvements in the co-ordination between the NOU, licence issuing bodies, customs and importers. The monitoring of imports is also improved greatly, and more and more countries are using a computerised data basis for customs. It appears therefore likely that governments can control successfully the HCFCs imports into their countries, and thus achieve compliance with their phase-out obligations. Nevertheless, this can not be interpreted as removing the need for assistance to the service sector because of two reasons:

- (a) The service sector is eligible for funding of incremental cost. The eligibility has been established in the indicative list of incremental cost ("cost of providing technical assistance to reduce consumption and unintended emission of ozone depleting substances"), as well as in the practice and guidelines of the Executive Committee; and
- (b) It might be viewed as a precondition before a government takes regulatory action to reduce the supply of HCFCs that there is an understanding that the country will be able to cope with the reduced supplies. Activities for the service sector provide the necessary assurance to governments.

81. Some Article 5 countries have already completely phased out CFC consumption, the remaining are implementing CFC phase-out activities in the servicing sector. These activities are i.e., customs officers and technicians are being trained; training centres are being properly equipped; refrigeration associations and project monitoring units have been established; and recovery/recycling, retrofits and other technical assistance programmes are also under implementation. Activities in the service sector related to HCFCs phase-out commencing at about the time of the CFC phase-out will maintain the momentum gained and capacity established beyond 2010 and will thus facilitate the cost effective phase-out of HCFCs.

82. Every HCFC-22 dependent refrigeration system imported into an Article 5 country will lead to a broadening of the HCFC-22 dependent equipment base and will subsequently lead to the need of HCFC-22 for service, to the need for retrofit or to premature retirement. It is therefore meaningful to consider how to avoid growth of and, subsequently, reduce the size of the HCFC-22 equipment base. This might require import restrictions, taxing of equipment and/or subsidies/tax breaks for equipment operating with HCFC-22 alternatives. The earlier such restrictions and incentives are decided upon by a government, the easier will be the transition away from HCFC-22 consumption in the service sector. Such legislative measures can be effective only under the circumstances when HCFCs-free refrigeration equipment is made available at a competitive price. Timely conversion of refrigeration equipment manufacturing facilities existing in some Article 5 countries might facilitate meeting the demand for

non-HCFCs equipment and reduce the dependence on HCFC-22 refrigerant in all Article 5 countries.

83. A number of activities in the service sector, in particular the non-investment activities, are recurring activities. Customs officers and, on a slower rate, refrigeration technicians are rotating out of their jobs, new arrivals need to be trained. In addition, training might need repetition or amendments relating to new developments. During CFC phase-out, service sector activities occurred on a large scale from about 1995 on, i.e. from 15 years before the final phase-out. Due to the need to achieve significant consumption reductions in the service sector in more than 70^6 of the Article 5 countries from 2010 onwards to comply with the 2013 and 2015 reduction steps, such activities will commence 30 years before the final phase-out date. The recurring nature of many activities and the long duration until final phase-out might suggest assessing which might be the best approaches to achieve sustainable, cost effective support for the service sector; these might differ from previously used approaches.

Existing experience

84. Phasing out CFC use in the refrigeration servicing sector has long been one of the Executive Committee's priorities. The Executive Committee was approving training programmes for refrigeration technicians, and recovery and recycling projects for this purpose as early as 1991. Since then, recovery and recycling projects and stand-alone training programmes have been replaced by refrigerant management plans (RMPs) and more recently by national/terminal phase-out management plans (NPPs/TPMPs) which has been a tool used by Article 5 countries to achieve compliance with the control measures established by the Montreal Protocol⁷.

85. At its 31st Meeting, the Executive Committee decided on the modalities for approving funding for the preparation and implementation of RMP projects (decision 31/48). Subsequently, at its 45th Meeting the Executive Committee decided to approve further funding for phasing out CFC consumption post-2007 period (i.e., 15 per cent of the CFC consumption baseline) in LVC countries through the preparation and implementation of terminal phase-out management plans (TPMPs) (decision 45/54). Through this decision, the Executive Committee, *inter alia*, established maximum funding levels on the basis of the CFC baseline consumption of LVC countries on the understanding that individual project proposals would still need to demonstrate that the funding level was necessary to achieve complete phase-out of CFCs.

86. The total funding approved for stand alone training programmes for refrigeration service technicians and customs officers, recovery and recycling projects and RMPs in all Article 5 countries amounts to US \$52.7 million (i.e., US \$29.6 million for LVC countries and US \$23.1 million for non-LVC countries). An additional US \$235.0 million is associated with TPMPs (for LVC countries) and national/sectoral phase-out plans (for non-LVC countries)

⁶ There are 70 Article 5 countries with HCFC-22 consumption below 150 metric tonnes (8.25 ODP tonnes) which is believed to be predominantly or exclusively used in the refrigeration servicing sector.

⁷ At its 31st Meeting, the Executive Committee decided on the modalities for approving funding for the preparation and implementation of RMP projects to achieve the 2005 and 2007 allowable levels of CFC consumption (decision 31/48). Subsequently, at its 45th Meeting the Executive Committee decided to approve further funding for phasing out CFC consumption post-2007 period (15 per cent of the CFC consumption baseline) in LVC countries through the preparation and implementation of terminal phase-out management plans (TPMPs) (decision 45/54).

UNEP/OzL.Pro/ExCom/55/47 Annex IV

addressing the total remaining consumption of CFCs, mainly used in the refrigeration servicing sector.⁸

Good practices in refrigeration

87. The Multilateral Fund has invested significant funding in the improvement of refrigeration servicing practices of CFC-based systems through the implementation of RMP and TPMP activities. Servicing practices for CFC and HCFC based systems are very similar; in both cases, there are additional measures that could be considered where appropriate to reduce emissions from refrigeration equipment.

- (a) In many Article 5 countries preventive maintenance of air-conditioning and refrigeration equipment is not a routine practice. Regular preventive maintenance and repair of the system can significantly reduce the leakage rate; and
- (b) Substantial resources have been allocated for introduction of recovery and recycling operations in Article 5 countries. Despite the introduction predominantly for the purpose of CFC recovery and recycling, many countries report higher amounts of HCFCs recovered/recycled than of CFCs; this might be related to the fact that even small air-conditioning systems have significant refrigerant content and that room air conditioners are often transported to a repair location, where equipment is available. It could be assessed whether additional efforts are meaningful to optimise the usefulness of recovery and recycling of HCFC-22; these might include better monitoring and creating appropriate incentives for owners of equipment and servicing technicians.

Retrofit and replacement activities in end-user sector

88. The HCFC-22 equipment base can be reduced by retrofit of HCFC-22 equipment, reducing future service demand and, in certain cases, making recovered HCFC-22 from the converted equipment available to the service sector. This is particularly relevant for equipment in commercial refrigeration. Conversions and retrofit activities in the end-user sector have been defined in decision 32/28. In addition, it appears meaningful to expect certain circumstances which must prevail before priority can be accorded to end-user conversions. Such potential preconditions for the funding of retrofitting activities might be e.g. that the country has banned the production and import of new HCFC equipment, or that the costs for using HCFC is comparatively higher than the costs of alternative technologies available in the country. For the next years until 2015, it is unlikely that these circumstances prevail in a significant number of countries; nevertheless, some additional considerations are provided below.

89. In order to assess whether a retrofit is meaningful, the remaining life-time of each system needs to be considered and a cost-benefit analysis should be performed. Since HFC alternatives are presently more costly than HCFC-22, there is a significant risk of a reverse retrofit back to HCFC-22. There are several possibilities to provide incentives against a reverse retrofit, which

⁸ Several national phase-out plans and a few TPMPs address small amounts of CFCs used in small foam and refrigeration manufacturing enterprises or small amounts of other ODSs, mainly CTC and/or TCA

need to be integrated into the design of the retrofit scheme; these would include long-term subsidies and long-term monitoring of the equipment. The retrofit schemes currently used would similarly subsidize the installation of new equipment with alternative technologies.

90. The administration of retrofit incentive projects is complex since inherently they provide a large incentive for inappropriate use, and require therefore careful monitoring of activities related to relatively small amounts of funding to ensure eligibility and sustainability. The Secretariat calculated in detail the costs associated with retrofits and came to a cost effectiveness of between US \$300/kg ODP and US \$650/kg ODP (US \$16.50 and US \$35.75/kg, respectively) for the actual retrofit alone, i.e. without accounting for administrative procedures. This figure is based on the assumption that the Multilateral Fund would cover 50 per cent of the costs, and the equipment owner the remaining, as is the case in existing retrofit schemes.

Cost information

91. The costing of HCFCs phase-out plans in the refrigeration servicing sector is influenced significantly by the prevailing circumstances in the country concerned, such as the size of the country in terms of population and surface area and the geographical distribution of the main economic activities; the actual amounts of HCFCs consumed in the servicing sector by type of equipment; and the characteristics of the refrigeration servicing sector including the number of service workshops and their geographical distribution. At present, some of this basic information is not available, and will only be known when Article 5 countries submit their HCFCs phase-out plans.

92. In spite of the limitations in the availability of information, the Secretariat has attempted a preliminary estimate on the incremental costs based on the Multilateral Fund experience in CFC phase-out activities.⁹ The estimation is meant to cover the funding needs for service sector activities and other non-investment activities until the 2015 reduction step, and was used exclusively to provide an approximation of the potential costs so as to better inform the on-going discussion of the Executive Committee. It was assumed that the service sector activities would be targeted to enable a reduction of consumption in the service sector proportional to the necessary national consumption. The level of detail in which the information is provided would allow also understanding the financial implications if countries with a HCFC-22 equipment manufacturing capacity would not commence service sector related activities immediately, but would rather concentrate on their manufacturing sectors. The following estimate assumes providing additional funding for reviewing ODS legislation, as well as training programmes at a level of funding estimated according to the level of HCFCs consumption in the year 2006.

⁹ Since the inception of the Fund, the total funding approved by the Executive Committee for stand alone training programmes for refrigeration service technicians and customs officers, recovery and recycling projects and RMPs in all Article 5 countries amounts to US \$52.7 million (i.e., US \$29.6 million for LVC countries and US \$23.1 million for non-LVC countries). An additional US \$235.0 million is associated with TPMPs (for LVC countries) and national/sectoral phase-out plans for non-LVC countries addressing the total remaining consumption of CFCs, mainly used in the refrigeration servicing sector. Several national phase-out plans and a few TPMPs address small amounts of CFCs used in small foam and refrigeration manufacturing enterprises or small amounts of other ODSs, mainly CTC and/or TCA.

UNEP/OzL.Pro/ExCom/55/47 Annex IV

Further, funding for technical assistance estimated at US \$18.20/kg ODP (US \$1.00/kg) of consumption, and additional funding (about 20 per cent of the total costs) for monitoring and reporting are assumed. The details of this estimate are presented in Table 13 below.

Table 13: Cost estimate for the refrigeration service sector as well as legislative, enforcement and monitoring activities to comply with the 2013 and 2015 HCFCs reduction steps, by national HCFC-22 consumption in 2006 in metric tonnes

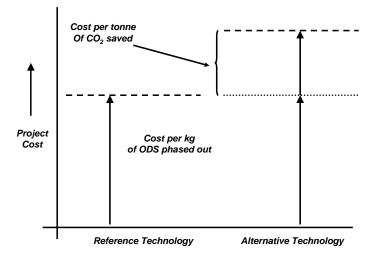
	HCFC-22 consumption in 2006							
Consumption	Below 30	Up to 100	Up to 300	Up to 500	Up to	Up to	Up to	Above
(metric tonnes):					1,000	5,000	8,000	8,000
Activities (in US \$):								
Legislation	10,000	10,000	10,000	20,000	30,000	50,000	50,000	80,000
Custom training	20,000	40,000	50,000	60,000	80,000	120,000	140,000	160,000
Technicians training	30,000	60,000	70,000	100,000	160,000	240,000	300,000	400,000
Technical assistance	30,000	100,000	300,000	500,000	1,000,000	5,000,000	8,000,000	11,000,000
Monitoring	20,000	40,000	90,000	140,000	250,000	1,000,000	1,700,000	2,300,000
Total (in US \$)	110,000	250,000	520,000	820,000	1,520,000	6,410,000	10,190,000	13,940,000

ANNEX V

ENVIRONMENTAL ISSUES

V1. Characteristics of the 'functional unit' approach

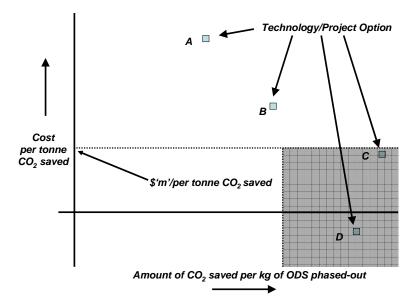
1. One of the advantages of the 'functional unit' approach is a simplified and transparent derivation of lifecycle impacts. It should be noted that, in contrast to an LCCP approach, the purpose is not to calculate the precise climate impact for each and every application, but to characterise these impacts to the extent that they can be used for the purpose of comparing technologies. It is therefore desirable to <u>fix</u> as many of the potential variables as possible across a sector or sub-sector and only allow those which have clear localised character (e.g. average carbon loading of energy) to be modified routinely.


2. In practice, the primary output from any 'functional unit' approach would be a <u>comparative</u> assessment of lifecycle climate impacts taking into consideration the GWP of the ODS substitutes involved, the charge size, the energy used in operation, the emission functions through the various phases of the life-cycle and any efforts anticipated for recovery at end-of-life. The normal comparison would use the HCFC-based technology as the baseline, in order to assess whether the alternative technology offers better or worse climate performance

V.2 Analysis made possible by the 'functional unit' approach

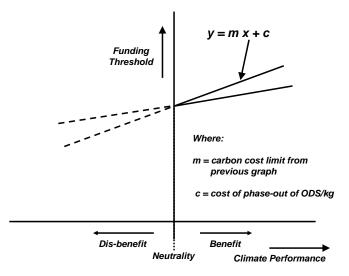
3. Carrying this approach forward into a practical analysis, some alternative technologies offer the capability of continuous adjustment. An example of such a technology would be HCFC-245fa-blown foams, co-blown with CO_2 (water). Since the level of co-blowing can, in theory, at least, be modified between 0 and 100 per cent, it is possible to envisage a range of climate impacts from 'low-to-high' associated with this range of technology options. At a certain point (in this case about 43.3 per cent co-blowing with CO_2 (water)) climate neutrality is reached with the HCFC-141b technology being replaced, based on the outputs of the 'functional unit' analysis. It is proposed that this technology is referred to as a "reference technology" for the transition and will be defined for each project or sector. Interestingly, the identity of the 'reference technology' is independent of the size of the enterprise being considered, since the analysis is based on a 'functional unit'.

4. In some sectors, it may not be possible to identify a technology capable of continuous adjustment. In such instances, the "reference technology" could be defined in terms of the closest such technology to climate neutrality. Although this could be defined as the closest either side of neutrality, some might prefer to see only those technologies with 'better than neutral' climate performance adopted as "reference technologies".


5. By evaluating the cost of implementing the "reference technology" using the existing Incremental Capital Cost (ICC) and Incremental Operating Cost (IOC) analysis, it is possible to derive the cost of an 'ozone only' transition, where the climate impact is broadly neutral. The analysis therefore delivers a cost per kilogramme of ODS phased-out (see graph below)

6. Against this benchmark any alternative technologies can be evaluated. In some instances the cost of alternative technologies may be less, even in cases where they deliver a climate benefit and there are no incremental costs. In other cases, such as that shown in the graph above, the alternative technology might be more expensive. In such circumstances, it is appropriate to consider the additional cost to be that required to achieve the additional climate benefit and a cost per tonne of CO_2 saved can be derived.

V.3 Possible funding mechanisms arising from the 'functional unit' approach


7. The Executive Committee might like to evaluate the output of such analyses on a number of different technology options for a project or programme in order to decide whether it is appropriate to provide funding for additional climate benefits over and above the reference scenario. To facilitate such an evaluation, there is a need to plot the unit cost of the saving in carbon terms against the 'potency' of the measure (i.e. the amount of CO_2 saved per kg of ODS phased-out). The following graph illustrates what this analysis might look like.

8. Using this approach, Executive Committee members could make decisions on the criteria for investment in additional climate benefits in terms of potency and climate benefit (as defined by the shaded area). In the example shown above, Technology A might be a blowing agent technology delivering poorer thermal performance, although being based on a low GWP blowing agent, whereas Technology C might be a similar low GWP technology delivering better thermal performance. It is useful to note, that this analysis would also take into consideration the size of the project envisaged. Therefore, Technology C might be situated in the shaded area for a 50te/yr plant, but outside of the shaded area (higher in terms of cost per tonne of CO_2 saved) for a 10te/yr plant.

9. Executive Committee members would have the ability to define these criteria by sector and region, with the additional ability to cross-reference the cost of the savings against other climate measures adopted by their own governments.

10. Having considered all aspects, the Secretariat believes that it would provide best use of Multilateral Funds to retain the existing ICC and IOC approaches in assessing the overall cost of a project or programme rather than reward climate benefits through market-based mechanisms based on carbon itself. However, it could be possible to use the upper bound of the permitted investment ($\frac{m'}{per}$ tonne CO₂ saved) to drive cost effectiveness thresholds, as shown in the diagram below:

11. Such an approach would not only provide an incentive, in terms of funding threshold, for climate benefits, but could also be used to determine lower thresholds for technologies creating climate dis-benefits against those offered by the "reference technology". However, the Executive Committee would need to satisfy itself that such an approach would still meet the obligations of the Multilateral Fund in terms of phasing out the relevant HCFC consumption targeted under decision XIX/6

12. As noted in earlier paragraphs, the 'functional unit' needs further evaluation across a wider range of sectors to provide assurance that the basic methodology can be applied more widely. The Secretariat therefore seeks the mandate to continue this work on the current path, or as revised by the Executive Committee in order to present a more concrete set of proposals at a future Meeting of the Executive Committee.

ANNEX VI

COMMENTS RECEIVED FROM MEMBERS OF THE EXECUTIVE COMMITTEE ON DOCUMENT UNEP/OZL.PRO/EXCOM/54/54: "Preliminary discussion paper providing analysis on all relevant cost considerations surrounding the financing of HCFC phase-out (decision 53/37 (I))"

Comments from the German Constituency, 30 April 2008

We do understand the time constraints under which Document 54/54 was produced. We therefore would like to propose the following considerations as constructive suggestions to improve the paper.

General comments

1. We thank the secretariat for presenting historic data, which is crucial for the identification of a methodological approach. In fact we would appreciate an even more in-depth analysis of historic cost developments under the MLF, not only averages, but tables providing more fundamental background information¹. Illustrating cost developments over time in the past could help to support certain assumptions on future application of innovative solutions and typical scenarios of cost adjustment for innovative technologies.

2. An analysis of the **incremental operating costs** raises serious concerns on the role of operational cost reimbursement. Operational costs appear to be detrimental in two ways,

- By covering operational costs, the use of higher cost HFC substances with high GWP (e.g. 245fa, 404a) may be promoted, instead of sustainable low GWP, low environmental impact substances, which may require higher capital investment but have subsequently lower operational costs and are overall cost effective, helping A 5 countries to keep product prices long term at a low level.
- Providing more cash for high IOC's of high GWP, HFC alternatives contradicts economic decision making for sustainable investments. Even though cash contributions of IOC's will be granted only for a short period of two years, the subsequent increase in production costs bears the high risk and economic incentive for enterprises to pursue illegal, continued use of HCFCs.

In conclusion, the incentive provide from incremental operational cost in doc. 54/54 appears to be in conflict with dec. XIX/6 by providing higher IOC's for high GWP alternatives bearing a high risk for illegal demand of HCFC. Therefore, in light of dec. XIX/6 in the case of the HCFCs, IOC's should not be eligible.

¹ For example, comprehensive back ground tables could be provided on historic development of consumption overall and in each individual (major) sub sectors (e.g. manufacturing, servicing), use of refrigerants in sub sectors, most common replacements in a sub sector, prices, products, cost overview for sub sectors in relation to impact ODP/GWP; alternative/technology; individual/multiyear/umbrella; ICC/IOCs; enterprise/production level;

3. Furthermore, as the **price of alternative technologies** will decrease over time, there should be an option for flexibility over time.

4. In general, calculations and developments of **cost effectiveness thresholds** in the different sub sectors should be made more transparent. In some of the cost samples of doc 54/54 (ANNEX III and IV) the cost per kg ODS for HCFC's are evaluated higher than historic costs per kg ODS for CFC's. It would be helpful to provide an analysis of the most cost effective sub sector projects. This will necessarily include activities of the MYA, because the HCFC phase out activities will be implemented within the frame work of Multiyear plans. Also, there might be lessons to be learned by comparing historic cost differences between individual and sector plan activities. Such comparison should pay specific attention to examples where long term low GWP solutions where applied in various sub sector.

5. Such exercise should include the influence of **end-of-life scenarios**. This would show how replacements made at the equipment's end-of-life and the loss of residual equipment value would influence the incremental costs calculation.

Foam Sector

6. The estimates provided in Annex III for **incremental capital costs** of low GWP technologies seem to be too high. Unfortunately, the document does not disclose any sources, references and authors to verify the validity of such information. During the EC HCFC-workshop in Montreal for example, suppliers indicated in their presentations that costs for low GWP technologies could be less than half of those stated in ANNEX III of doc 54/54. Doc. 54/54 should take into account the latest development in CO2, ammonia and/or hydrocarbon technology use for medium to small scale foaming and in refrigeration.

7. **Small scale users** might be better served by concentrating the MLF support on system house solutions rather than individual enterprise funding.

Refrigeration and air conditioning sector:

8. Future **Economies of scale** need to be factored in. For example, cost differences for compressors disappear when entering economies of scale through mass production. One cost difference between 22 and HC technology for example is not due to the compressors, but because of the need for additional ex-protected and safety components. These components however should contribute only to marginal cost differences. Experiences exist (e.g. with the Italian manufacturer Delonghi).

9. Based on past experience, fund assistance could be more effective by providing long term technology only to enterprises that **demonstrate sustainable business patterns**. Providing short term (high GWP) solutions to enterprises that are obviously operating ad hoc and with short term arrangements should be avoided. Criteria should be developed to assess these options, including business rationalization. Experiences from evaluating National Phase Out and Sector Plans indicate that a significant large number of enterprises funded in the past were apparently not operating on long term basis. Specifically in the refrigeration manufacturing sector many small

and medium enterprises have operated only on a temporary basis². Considering the long time period of the HCFC phase out, these situations must be dealt with appropriately while describing eligibility of sub sector projects.

Environmental considerations and cost implications

10. Decision XIX/6 calls for the Parties "to promote the selection of alternatives to HCFCs that minimize environmental impacts, in particular impacts on climate as well as meeting other health, safety and economic considerations". **Energy efficiency effects** and respective savings of different technologies need to be considered therefore in any discussion of relevant cost considerations of funding HCFC projects. It should not be assumed however that the MLF should fund additional costs that relate solely to climate benefits resulting from energy savings, since this is not the purpose for which the MLF was established. Germany looks forward to further discussion of this issue at Excom 55. For example, where there is a case for additionality of the energy efficiency gains, consideration might be given to support countries to encourage their enterprises to apply for CDM projects or seek finance through the voluntary carbon market or through other sources. It will remain very important however to have an approach to assess the cost-effectiveness of HCFC phase-out projects that is consistent with Decision XIX/6.

11. It is for further consideration, whether the inclusion of TEWI or LCA in project analysis is required. It would complicate the process of MLF project approval. On the other hand, **environmental considerations** could be factored into threshold limits. For example, the higher the GWP of an alternative, the lower the funding threshold would be to pay for it unless there were significant compensating energy savings.

12. In the continuing process of approving cost-effective HCFC phase out projects there needs to be a mechanism in place ensuring responsible use of the funds for **sustainable, overall positive impact** on climate as per dec. XIX/6.

² For example in the various evaluation studies investigators have repeatedly found that small enterprises in the refrigeration sector were closed down shortly after conversion.

Comments from the Government of Lebanon E-mail received on 30 April 2008

I refer to the ExCom document 54/54 appreciating an earliest revised version of this document to be posted on the MLF website the soonest in order for a wider range of parties can be involved and have enough time to read and discuss it before the OEWG meeting. Please find below my general comments on this document:

1. The paper contains substantial technical information, however, the crucial part of this document limits itself to only investment costs for actual phase-out, we think that this document should be more extensive in identifying all the relevant sources and categories of costs such as, Initiation costs, Management costs and other Non-investment costs (i.e. Demo projects, cost for preparation of HPMPs, costs for formulation of regulation and policy actions....etc).

2. Although HCFCs use is relatively low in the Aerosol, Firefighting and solvents, while the document covers only the Foam and Refrigeration sectors, , a need for a revised detailed sectors should be included.

3. The document addresses Foam and Refrigeration sectors, with detailed technical information on the alternatives, incremental operating costs, cost benefits...etc , however there should be a demonstration of the technical and commercial viability of the technology options in A5 situations.

4. The stipulated freeze by 1-1-2013 is close, there is a need of combined efforts to assist A5 countries to achieve this milestone, by considering guidelines for Demonstration projects (Pilot projects) in order to better address the use of good cost-effective new technologies or adaptation from existing technologies that will help in overcoming any potential delays for reducing HCFC demand.

5. More concrete guidance related to financing HCFC phase-out activities are needed in this document.

6. The document should propose initial fast-track investment projects, which could help in providing early motivation to enterprises for participating in HCFC phase-out activities.

7. The funding provided for CFC phase-out under the MLF has created infrastructures that may to some degree facilitate HCFC phase-out. However the preliminary cost estimate for phasing-out HCFCs is considered low compared to the CFCs phase-out cost (In general).

8. Approval at the earliest of funding for phase-out activities, in particular in the servicing sector, could maximize potential benefits from currently funded, or soon to be funded phase-out activities.

9. The document should provide a roadmap on how the information related to costs as provided therein, can be translated into usable criteria for funding of projects in various sector/sub-sectors.

Comments from the Government of Dominican Republic E-mail received on 30 April 2008

On behalf of Dominican Republic Delegation and in attention to the issue of Funds for HCFC Demo and Pilot projects implementation that is supposed to be discussed at the 55th ExCom meeting, we are sending to you our shared comments on it.

Considering the importance to A5 countries of testing new technologies which are not mature nor available in developing countries so far, we consider as critical that the Secretariat develops and includes draft funding criteria for pilot/demo projects, so ExCom members can consider such criteria in the context of 54/54 doc discussions supposed to discuss at the 55th ExCom. Without draft criteria being discussed at the 55th meeting, the ExCom will not be in the position to consider Business Plan of such projects at the 56th meeting.

Comments Submitted by Australia on behalf of Australia and Canada E-mail received on 28 April 2008

Factual comments on the final draft study on the collection and treatment of unwanted ODS in A5 and non-A5 countries prepared by ICF International

Page 2, Exhibit ES-1	The table should include "ticks" for Australia in the following columns:
	 Explicit requirement to recover refrigerant prior to building demolition – Regulation 111(2)(c) of the Ozone Protection and Synthetic Greenhouse
	Gas Management Regulations 1995 provides this explicit requirement
	• Standard for Refrigerant recovery at appliance servicing and disposal – regulation 135 (Table 135 – Standards) provides that licence holders must conform to Australian Standards 4211.1 and 4211.3 which require gas removal from motor vehicle and commercial/domestic refrigeration systems.
Page 11, line 34	The study mentions significant amounts of unwanted ODS in Article 5 countries
	and even provides an estimated amount per country. This estimation needs to be sourced or referenced. Assuming there is a source, it is doubtful if 5 tonnes per country is "significant", especially considering that this amount has accumulated over the 20+ years. As well, averaging an estimated total number
D 17.1' 07	of unwanted ODS by the number of Article 5 countries can be very misleading.
Page 17, line 27	Australia should be included as a country that has compliance and verification regimes in place at the government level. In the case of Australia, the Australian Refrigeration Council conducts audits under contract and on behalf of the Government.
Page 18, Exhibit 4-2	In relation to domestic appliances and MAC, Australia has a PSS \$\$ scheme in place as per bulk.
Page 37, section 8.1	This section assumes a central government will be doing things. Private sector considerations should be included here, for example, an international, free-market mechanism for collecting, reclaiming and disposing of unwanted ODS could also be an option.
Appendix A - Australia	Page 61, line 23 – delete reference to July 2005 and August 2005 amendments, as these were very minor amendments.
	Page 66 – A-Gas system box – this box appears incomplete, perhaps just a formatting problem
	Page 67 – PLASCON box – same problem
	Page 67, footnote 19 – delete the estimation in brackets entirely, as this estimation is unfounded.
	Page 70 line 2 – delete "HFC", so the phrase reads "as an increasing number of systems"
	Page 73, line 26 – the proper name of the Act is the "Ozone Protection and Synthetic Greenhouse Gas Management Act 1989".

环境保护部

MINISTRY OF ENVIRONMENTAL PROTECTION, P.R.C.

115 Nanxiaojie, Xizhimennei, Beijing 100035, The People's Republic of China

FACSIMILE COVER SHEET AND MESSAGE

Date: April 30, 2008 To: Ms. Maria Ulana Nolan Chief Officer Secretariat of the Multilateral Fund for the Implementation of the Montreal Protocol Tel.: +514 282 1122 Fax: +514 282 0068

No. of Pages: From: Mr. Wen Wurui Deputy Director General Foreign Economic Cooperation Office Ministry of Environmental Protection

Tel: 86-10-88575088 Fax:86-10-88577789

Subject: Comments on UNEP/OzL.Pro/ExCom/54/54

Dear Ms. Maria Nolan,

In responding to decisions made at the 54th ExCom meeting regarding the "Preliminary discussion paper providing analysis on all relevant cost considerations surrounding the financing of HCFC phase-out", the Ministry of Environmental Protection has consulted relevant associations and industrial experts in the review of the above-mentioned paper and also asked the opinions from the opted members of China. Here I have the honor to present you China's comments on the document UNEP/OzL.Pro/ExCom/54/54, and we hope these comments will be considered and helpful while the Secretariat makes revisions to the paper to be submitted to the next ExCom meeting. Please don't hesitate to contact us in case you have any questions.

Sincerely yours,

Wen Wurui Deputy Director General FECO/MEP

Comments on UNEP/OzL.Pro/ExCom/54/54 "Preliminary discussion paper providing analysis on all relevant cost considerations surrounding the financing of HCFC phase-out (Decision 53/37(1))"

I. General

1. The paper mainly covers the cost analysis of two major sector, namely the fourn and refrigeration sectors, without touching smaller sectors including the solvent sector, the aerosol sector, etc.; and in the analysis to the refrigeration sector, it talks mainly about the phase-out of HCFC-22, and no detailed analysis has been made on other HCFCs such as HCFC-123 and HCFC-133. We understand that these sectors and substances account for a small part in the phase-out of HCFCs, however, since we will also have to deal with them in our HCFC phase-out efforts, their relevant information should be included in this discussion paper.

2. While analyzing relevant substitute technologies, very little attention is given to new potential technologies, such as CO2 in the refrigeration sector. We have learned that progress has been made in the development of the CO2 technology as it is used in certain products and applications in the developed countries. Therefore, we hope that more attention would be given to this technology in this discussion paper.

- 3. There is a great difference in some of the cost calculations and the prices of some chemicals between what is written in the paper and the situation we understand, which leads to substantial gaps between some of the conclusions in the paper and the actual situation as we have known.
- 4. The recommendation section in the discussion paper should be in a more detailed way so that it could help the ExCom to make more concrete decisions to promote the HCFC phase out.

II. Executive summary

Para 1

After the second sentence "These HCFCs are ... in the refrigeration servicing

sub-sector", add one more line ", and a small portion of them are used in sectors including the solvent and aerosol sectors".

Para 2

In this paragraph and some later parts of this paper, methyl formate is considered as "a technology appears to have high prospects of meeting the foam production needs of A5 countries enterprises and at lower costs". However, we are not so convinced with this point. According to our experience, in China, the biggest foam market, there is no previous example using methyl formate as blowing agent. In addition, according to the presentations in the Technical Meeting on HCFC Phase-out held on April 5-6 in Montreal, there are some limitations with regard to the use of methyl formate, because this technology will lead to poor insulation performance of foams, and will not have promising future in the substitution of HCFCs. Besides, as we know that methyl formate is a flammable chemical, and we should consider the safety issues when using methyl formate, therefore, we think it is inappropriate to list it as one of the midn substitute technologies in the foam sector when there are no adequate supporting data. We would suggest that the Secretariat conduct a survey into this technology, and if it is not appropriate for the substitution of HCFCs, we should delete relevant part from the paper.

It is also mentioned in this paragraph that "For HCFC-22 in the refrigeration sector, the situation is similar, and HFC and hydrocarbon replacements are available." As far as we know, in most refrigeration sub-sectors, some HFC technologies have actually been introduced commercially, however, for hydrocarbon, the application of this technology is still quite limited and far from being introduced commercially.

Para 4

We can not agree with the first two sentences of the paragraph. These two sentences give us the impression that most foam projects will not need any investment on equipment in future. However, the actual situation is that the HFCs are likely to be controlled in future for their high GWP, methyl formate and water based technologies are limited in the use of areas because of their performance and nature, and the most sustainable potential substitute technologies maybe the hydrocarbons, however, these technologies will need substantial investment in terms of equipment replacement and

safety related equipment. In addition, in the conversion from CFCs to HCFCs, some small enterprises haven't changed their equipment to high pressure machines. Therefore, we can only have a better understanding of the situation of the whole sector after conducting the survey in the preparation of the HPMP. We would like to suggest the Secretariat to change the wording of the first two sentences of this paragraph, and words like "overall", "no additional funding" and "most of the alternatives" should be avoided.

Para 5 (a)

Before the ExCom has made any new decisions to the IOC, the cost calculations should be based on the previous experiences for CFCs phase-out. In some sectors, due to patent issues, the substitutes to HCFCs are really expensive, so that the IOC is the main incremental costs for the industries and enterprises in these sectors. And without IOC, it will be difficulty to implement the projects.

Para 5 (b)

If we put equipment reaching the end of its useful life as a recondition for project approval for the HCFC projects, it will bring great risks and difficulty for the governments to manage their compliance efforts. We have learnt that most enterprises are not so active in the substitution of HCFCs, and in addition, the determination of the useful life of equipment is a complicated issue, if we have a guideline like this, the enterprises will use this policy as an excuse to postpone their substitution. For example, for some enterprises, the equipment need retrofit or replacement is only a part in their production line while the life for the whole production line is very long; and for some other enterprises, they have different sets of equipment purchased at different times, but we will have problems if we carry out projects in different phases in some of these enterprises.

Para 5 (c)

We agree with the idea that different CE thresholds should be applied to different applications to provide incentives for the adoption of hydrocarbon technologies. In addition, we would like to point out that in the non-appliance foam sub-sector, we should also encourage then enterprises that wish to go for the hydrocarbon technologies by providing them with incentives in the cost.

Para 6

Regarding the indicators for environmental impacts, we think that it is appropriate that the A5 countries should take a comprehensive look at this issue while preparing their HPMPs. Since the indicators are not only for the A5 countries, before the MOP has made any decisions on this issue, we think the ExCom should not apply any compulsory environmental indicators to the projects for A5 countries.

Para 7

Regarding the co-financing issue, we suggest that these paragraphs to be revised according to the relevant decisions made by the 54^{th} ExCom meeting. And we fully agree that the use of co-financing modalities should not be applied for projects related to the 2013 and 2015 targets since it will need a lot of time and lead to some difficulties in project implementation.

III. Foam sectorPara 19The Article 5 countries in line 5 should be non-Article 5 countries.

Para 22

As methyl formate is flammable, we think it should not be in the same category with HFC and water-based systems.

Para 22 (a)

It should also be pointed out that according to Decision XIX/6, the ExCom should make necessary changes to the eligibility criteria to the second conversions.

Para 25, Table II.1

As far as we know, the water-based systems are not suitable for substitution in spray foam, as well as in the panels and domestic and commercial refrigeration applications, therefore, we suggest deleting the cost calculations for the water-based systems in the abovementioned sectors. And in China, water-based systems have limited applications in the pipes and integral skin foam sub-sectors.

Para 27, Table II.2

The price for MDI is too low, and the USD 1.5/kg price has not been seen in the market in the recent years. We've learnt that the price for MDI is similar in the global market. China has the capacity to produce MDI and the price for MDI in China is relatively low compared to the other parts of the world. The current price is around USD 3.44/kg.

The price for pentane in the table is also low than the current market price. With the growth in the oil price and the depreciation of the US dollar, the price for pentane in China has doubled from the one on which we did the CFC phase-out projects. The current market price for pentane is around USD 1.9/kg, and since the foam prices have to pay for a high transportation fee as pentane has to be transported as dangerous chemicals, the price when pentane arrives at the manufacturing enterprises is much higher than the one when it leaves the producer.

Para 29-30 Table II.3

We are not clear how these calculations are made. Generally speaking, we think the conclusion from the Table II.3 (in the Corrigendum) that we will have IOC saving converting to pentane and cyclopentane is not correct. When converting to pentane or cyclopentane, there are needs to increase the associated amount of MDI and polyol, the density of the foams and the consumption of power, to change process agents and to add more and better retardants, and these needs lead to an increase in the IOC which has been noticed in the production of the enterprises. The following data is provided by a domestic appliance enterprise indicating its increase in the IOC after converting to cyclopentane in its production:

For every kilogram of blowing agent, 7.4-7.7 kg of pre-mixed polyol and 10.1-10.4 kg of MDI are needed. Due to its performance and nature, the amounts needed for pre-mixed polyol and MDI for cyclopentane are 2.5% and 2.6% more than for HCFC-141b. We could make a calculation based on the current market prices of these main materials, namely UDS 2/kg for pre-mixed polyol and USD3.44/kg for MDI, to substitute HCFC-141b with cyclopentane will lead to an increase of IOC of USD 1.3/kg.

And for other rigid foam products, since the need for retardant will be greater, the IOC will be further increased.

IV. Refrigeration sector

Para 41

Though the equipment with HCFC-123, HCFC-124 and HCFC-142b are mainly produced by non-A5 countries and the quantities are small compared with HCFC-22, there are still a large number of users of these kinds of equipment in the developing countries. So the paper should also address how the accelerated phase-out of HCFCs will impact these users.

Para 42

The last sentence is not complete, because though there are some large enterprises in the air conditioning sector, still, in the A5 countries, there are a large number of SMEs in this sector.

Para 46 (a)

The last sentence of this paragraph is not so correct. It is sure that hydrocarbons have been successfully used in refrigerators, however, in the mobile air conditioners and small commercial refrigeration equipments, hydrocarbons are not widely used excupt for in some individual products.

Para 49-52

In these paragraphs and relevant paragraphs in Annex IV, the cost calculations have not considered the cost for equipment recycle, there is no clear description of the technical assistance activities, and the calculations are relatively low. Since the amount of HCFCs for servicing is big and the number of users of these kinds of equipment is huge, and compared with CFCs, the phase-out of HCFCs in the servicing sector will face more and bigger challenges, which will lead to higher costs. We mentioned in paragraphs above that we have to protect the rights of the users for HCFC-123 and HCFC-124 equipment, and we think this should be done in the servicing sector.

Para 56, Table III.1

We are wondering if it is still necessary to recommend R407 in the table as it is stepping out of the air conditioning market due to its disadvantage in performance and nature. The cost calculations for commercial refrigeration is obviously too low, and we would suggest more detailed survey to be undertaken for this sector. In addition, the conversion of compressors is an important part in the HCFC phase-out in the refrigeration sector, but it is not mentioned adequately and there are no cost calculations for the conversion of compressors in this paper. We believe that without conversion projects done in the compressor sector, it will pose great challenge for the smooth phase-out of HCFCs in the refrigeration sector.

We got the following information on the cost calculations from the China Refrigeration Association and the China Household Appliances Association, mainly on the Annex IV to this paper (the paragraphs mentioned in below refer to those in Annex IV):

Para 56

Concerning the IOC for the small air-conditioners, we suggest that when calculating the IOC for air-conditioners with R290 as the refrigerants, the following aspects should also be considered:

1. The incremental costs for the air-conditioner to meet the safety requirements. The inner electric control system in the air-conditioners need to be improved, for example, the electric box cover must has airproof and fireproof quality, and important electric parts must be explosion proof.

2. The incremental costs for the installation of the air-conditioners to meet the safety requirements. For example, the connecting valves should be used, however, due to patent issue, the connecting valves are expensive.

3. The incremental costs for after sales services. If the amount of refrigerants in the air-conditioners with HCFC-22 or HFC-410a is not enough, they could be recharged directly by drop-in new refrigerants. However, for air-conditioners with R290, the recharging is much more difficult and expensive.

In addition, when making the cost calculations for conversions to R290, the paper assumes the charge of refrigerant to be 0.15kg, however, we think that when converse the equipment with 1kg charge of HCFC-22 to R290, the charge should be 0.45kg.

Para 58

The conversion in the industrial and commercial refrigeration sector mainly includes the conversion to the ducted commercial and packaged air conditioners, chillers, compressors, and condensing units.

Regarding the ducted commercial and packaged air conditioners, two technologies are considered, namely HFC-410A and HFC-407C. However, from the utilization of these two technologies, except for servicing, HFC-407C is seldom used in the new products in the industrial and commercial refrigeration sector now, and the main substitute in this sector in HFC-410A in the global market.

Para 59

Actually, in the production of ducted commercial and packaged air conditioners in China, the refrigerant charging operations are done on the production site.

Para 60

The IOC is calculated for the conversion of a manufacturing facility producing 1000 units of an average of 15 kW cooling capacity or even lower capacity. However, the actual situation is that the product specifications and quantities of production of the industries' are larger than the 1000/15kW capacity.

For ducted commercial and packaged air conditioners, if we make the calculation assuming that one factory has 1000 sets capacity (15kW and 10 production specifications) and the average IOC is \$ 2000 of each machine, then we get the IOC (including compressors, refrigerant, heat exchangers, refrigeration parts, valves, piping, etc.) totaling about \$ 200,000 per year, and the IOC here of a single machine is 10-15% higher than HCFC-22 machines. And the ICC (including design fees, prototype, testing, pilot production, tooling equipment, training) is about \$300,000.

For chillers, the refrigerants include R134a and R410A, and the refrigerants are

charged by manufacturers in China. The ICC here is approximately \$ 610,000, including design fees, prototype, testing, pilot production, tooling equipment, training etc. and the IOC is about \$ 812.000 a year, with that of a single machine 10-15% higher than HCFC-22 machines.

Para 72

For commercial refrigeration and condensing units, the ICC (including design fees, prototype, testing, pilot production, tooling equipment, training etc.) is approximately USD 300,000. And the IOC is about USD 75,000.

For the conversion of the compressors, if we calculate the ICC for a production line with the capacity of 2000 sets of 500kW capacity equipment per year in 5 production specifications, the ICC will amount to \$460,000.

V. Other considerations and co-financing

Para 68

We would suggest that this paragraph be deleted.

Para 69-75

We would suggest that these paragraphs be revised according to relevant decisions made in the 54th ExCom.

VI. Recommendations

We suggest that this section should be reconsidered and restructed, and take into account the following recommendations:

Para 76 (a)

We suggest that before the ExCom makes new decisions for IOC, the pilot projects and the HPMP should follow the previous experience in the phase-out of CFCs including the duration for payment of IOC, etc.

9

Para 76 (b)

We would suggest that this paragraph be deleted.

Para 76 (c)

At present, it is not applicable to oppose rigid environmental indicators for MLF funded projects. And the prioritization of these indicators should also allow flexibility, and could let the countries to take into consideration of their different country status, different nature of respective industries, the availability of the substitute technologies, etc.

Para 76 (d)

We agree with (i) and think that the cut-off date should be decided soon, otherwise it will bring great difficulty to the A5 countries in their preparation for the HPMPs and future work, and policy principles should also be made clear as soon as possible for second conversions. And we would suggest deleting (ii).

In addition, we suggest that the following issues to be considered in the paper:

- 1. What's the function and objective of this paper?
- 2. As it is pointed out in this paper that due to lack of experience in HCFC phase-out, it is difficult to provide appropriate guidance in terms of technology recommendation and cost calculations. We quite agree with this point and suggest that the ExCom approve some pilot projects to testify the technologies and to gain relevant cost information.
- 3. Detailed recommendations should be provided regarding how the 56th ExCom could review pilot projects.