NATIONS UNIES

Programme des Nations Unies pour l'environnement

Distr. GÉNÉRALE

UNEP/OzL.Pro/ExCom/76/28 14 avril 2016

FRANÇAIS ORIGINAL: ENGLISH

COMITÉ EXÉCUTIF
DU FONDS MULTILATÉRAL AUX FINS
D'APPLICATION DU PROTOCOLE DE MONTRÉAL
Soixante-seizième réunion
Montréal, 9 – 13 mai 2016

PROPOSITION DE PROJET : COSTA RICA

Le présent document contient les observations et la recommandation du Secrétariat du Fonds sur la proposition de projet suivante :

Réfrigération

• Démonstration de l'application d'un système de réfrigération à base d'ammoniac/dioxyde carbone en remplacement du HCFC-22 pour un producteur de moyenne taille et un magasin de vente au détail Premezclas Industriales S.A. au Costa Rica

PNUD

FICHE D'ÉVALUATION DU PROJET – PROJET NON PLURIANNUEL COSTA RICA

TITRE(S) DU PROJET AGENCE BILATERALE/D'EXÉCUTION

base d'ammoniac/dioxyde carbone (R-717/R-744) en remplacement du	
HCFC-22 pour un producteur de taille moyenne et un magasin de vente	
au détail Premezclas Industriales S.A. au Costa Rica	

AGENCE NATIONALE DE COORDINATION Unité nationale de l'Ozone

DERNIERES DONNEES DE CONSOMMATION DE SAO INDIQUEES ET TRAITÉES DANS LE PROJET

A: DONNÉES DE L'ARTICLE 7 (TONNES PAO, 2014, A COMPTER D'AVRIL 2016)

B : DONNÉES SECTORIELLES DU PROGRAMME DU PAYS (TONNES PAO, 2015, A COMPTER D'AVRIL 2016)

HCFC-22	8,56
HCFC-141b	2,19
HCFC-141b dans les polyols prémélangés importés	1,10
HCFC-142b	0,14
HCFC-123	0,05
HCFC-124	0,01
HCFC-225ca	0,05
HCFC-225cb	0,07

Consommation de HCFC restante admissible au financement (tonnes PAO)	9,17
--	------

ALLOCATIONS POUR LE PLAN D'ACTIVITÉS DE L'ANNÉE EN COURS		Financement en \$US	Élimination (tonnes PAO)
	(a)	500 000	0,00

TITRE DU PROJET :	
Utilisation de SAO dans l'entreprise (tonnes PAO) :	0,035
SAO à éliminer (tonnes PAO) :	0,035
SAO à introduire (tonnes PAO) :	0
Durée du projet (mois) :	14
Montant initial demandé (\$US):	590 000
Total des coûts du projet (\$US):	
Coûts différentiels d'investissement :	524 000
Imprévus (10 %):	0
Coûts différentiels d'exploitation :	0
Coût total du projet :	524 000
Participation locale (%):	100
Volet d'exportation (%):	0
Subvention demandée (\$US):	524 000
Rapport coût-efficacité (\$US/kg):	S.O.
Coûts d'appui à l'agence d'exécution (\$US):	36 680
Coût total du projet pour le Fonds multilatéral (\$US):	560 680
État du financement de contrepartie (O/N):	0
Suivi périodique du projet inclus (O/N):	0

RECOMMANDATION DU SECRÉTARIAT Pour examen individu
--

DESCRIPTION DU PROJET

1. Au nom du Gouvernement du Costa Rica, le PNUD, désigné agence d'exécution, a présenté à la 76^e réunion une demande de financement pour un projet de démonstration de l'application d'un système de réfrigération à l'ammoniac/CO₂ (R-717/R-744) en remplacement du système de réfrigération commercial à base de HCFC-22 utilisé dans le magasin de vente au détail de Premezclas Industriales S.A. au Costa Rica, pour un montant de 590 000 \$US, plus les coûts d'appui d'agence de 41 300 \$US présentés au départ¹. La proposition formulée ici figure dans l'annexe I au présent document.

Objectif du projet

- 2. Le Costa Rica a consommé 185,45 tonnes métriques (tm) (12,18 tonnes PAO) de HCFC dans le secteur de l'entretien et du montage des systèmes de réfrigération et de climatisation en 2015. Une partie de cette consommation a été utilisée pour recharger les nouvelles installations d'équipements de réfrigération industrielle et commerciale (RIC). Malgré les efforts déployés par le Gouvernement pour introduire des frigorigènes naturels à faible potentiel de réchauffement global (PRG), il y a des obstacles importants à l'adoption de ces technologies à l'échelle commerciale. Par conséquent, les HFC ont été utilisés comme solutions provisoires pour remplacer les HCFC dans le sous-secteur du montage des équipements de RIC dans la mesure où il s'agit de technologies à faible coût, matures et disponibles sur le marché. Dans ces conditions, le projet vise à démontrer l'utilisation d'un système de réfrigération bi-étagé R-717/R-744 dans les magasins de vente au détail comme solution viable pour remplacer un système à base de HCFC-22.
- 3. L'entreprise prenant part au projet, Premezclas Industriales de Panadería S.A. (Premezclas), exploite un système d'entreposage frigorifique d'une capacité de réfrigération (CR) de 50 tonnes pour le stockage de biens alimentaires, comprenant une unité centrale avec deux compresseurs scroll et 14 échangeurs thermiques avec une charge en frigorigène de 909 kg de HCFC-22. Le système proposé permettra de réduire la pression de service et le coût du circuit secondaire ainsi que le volume de charge en R-717, diminuant ainsi les risques pour la santé et la sécurité.
- 4. En 2015, 0,64 tm de HCFC-22 a été utilisé pour recharger le système. Grâce au projet de démonstration, l'entreprise s'est engagée à éliminer cette consommation (une lettre d'engagement signée par Premezclas a été reçue).

Mise en œuvre du projet

5. Le projet de démonstration consistera à concevoir et à installer un nouveau système bi-étagé à base de R717/R-744 avec le R-717 comme frigorigène primaire et le R-744 comme fluide de transfert de chaleur, à tester le système pour évaluer ses performances et son efficacité énergétique par rapport au système à base de HCFC-22 ainsi qu'à former des ingénieurs et des techniciens. Les renseignements recueillis serviront à élaborer des normes et des lignes directrices de conception, d'installation et d'exploitation des systèmes à base de R-717/R-744 dans les pays aux conditions climatiques similaires à celles du Costa Rica. La démonstration sera également l'occasion de former les ingénieurs et les techniciens qui répliqueront ces systèmes dans leurs propres opérations.

¹ Le financement pour la préparation de ce projet a été approuvé à hauteur d'un montant de 40 000 \$US, plus les coûts d'appui d'agence de 2 800 \$US, étant entendu que son approbation ne signifiait pas l'approbation du projet ou de son niveau de financement au moment de sa présentation (décision 74/26).

Budget du projet

6. Le coût total du projet a été estimé à 1 020 095 \$US, dont 590 000 \$US ont été demandés auprès du Fonds multilatéral, et le solde restant de 430 095 \$US sera cofinancé par l'entreprise, ainsi qu'indiqué dans le tableau 1.

Tableau 1. Coût du projet par activité (\$US)

Volet	Description	Demandé	Cofinancement	Total
Équipement et	Équipement	344 000	234 245	579 245
processus de	Frais de surestarie et livraison de	-	17 529	17 529
reconversion	l'équipement			
	Travaux de génie civil	-	43 206	43 206
	Montage, installation et mise en service	100 000	91 348	191 348
	Registre des plans techniques	-	13 266	13 266
	Coûts imprévus	30 500	29 500	60 000
	Sous-total	474 500	430 095	904 595
Assistance	Expert international	30 000	-	30 000
technique	Expert national	25 000	-	25 000
	Élaboration des réglementations et des	15 000	-	15 000
	normes			
	Renforcement des capacités (formation)		-	25 000
Atelier de réalisation		10 000	=	10 000
	Coûts imprévus	10 500	-	10 500
	Sous total	115 500	-	115 500
Total des coûts		590 000	430 095	1 020 095

7. Le projet sera coordonné par l'Unité nationale de l'Ozone (UNO) avec l'assistance du PNUD. Il devrait s'étendre sur 14 mois.

OBSERVATIONS ET RECOMMANDATION DU SECRÉTARIAT

OBSERVATIONS

- 8. Un système de réfrigération bi-étagé à base de R-717/R-744 a été installé par une multinationale (Unilever) dans un pays d'Amérique latine. Toutefois, les informations concernant l'évaluation de sa performance ne sont pas encore disponibles. Ainsi, le projet de démonstration proposé approfondira les connaissances relatives au système de réfrigération bi-étagé à base de R-717/R-744, ce qui constitue une avancée technologique. Il pourrait également permettre de remplacer les entrepôts frigorifiques à base de HCFC-22, faciliter l'élaboration des lignes directrices et des normes, identifier les fournisseurs des pièces et des composants et aider à éliminer les obstacles techniques et logistiques à l'introduction de la technologie.
- 9. Parmi les risques et obstacles susceptibles de nuire à la réussite de l'application figurent le coût élevé de la technologie, le manque d'informations, d'approvisionnement en composants, le manque de compétences techniques et de savoir-faire des ingénieurs et techniciens. Il est prévu que le transfert de technologie, la formation et le soutien à la chaîne d'approvisionnement inscrits dans le projet réduisent les risques associés à l'introduction de la technologie proposée.
- 10. À la lumière de la décision 74/21 c), le Secrétariat a suggéré que le PNUD envisage des possibilités de rationaliser les coûts de ce projet de démonstration. En réponse à cette suggestion, le PNUD a ajusté le coût du projet en supprimant la demande concernant la réglementation et les normes (15 000 \$US); l'atelier de réalisation (10 000 \$US) et les coûts imprévus (41 000 \$US). Le coût final des projets demandé par le Fonds s'élève à 524 000 \$US, plus les coûts d'appui d'agence.

Conclusion

11. Le projet de démonstration a été lié aux activités d'élimination proposées dans le cadre du PGEH pour le Costa Rica. Si le projet fait ses preuves, il fournira une solution technologique viable à faible PRG pour remplacer le HCFC-22 utilisé dans les supermarchés et les applications de stockage frigorifique et sera en mesure d'améliorer l'efficacité énergétique du nouveau système de réfrigération.

RECOMMANDATION

- 12. Le Comité exécutif pourrait envisager :
 - a) Le projet de démonstration de l'application d'un système à base d'ammoniac/de dioxyde de carbone (R-717/R-744) pour remplacer le HCFC-22 utilisé dans le magasin de vente au détail de Premezclas Industriales S.A, compte tenu de l'examen des propositions de projets de démonstration des solutions à faible potentiel de réchauffement global (PRG) visant à remplacer les HCFC ainsi que décrit dans le document donnant un Aperçu des questions recensées pendant l'examen des projets (UNEP/OzL.Pro/ExCom/76/12);
 - b) D'approuver le projet de démonstration de l'application d'un système de réfrigération à base d'ammoniac/de dioxyde de carbone (R-717/R-744) en remplacement du HCFC-22 utilisé dans le magasin de Premezclas Industriales S.A., pour un montant de 524 000 \$US, plus les coûts d'appui d'agence de 36 680 \$US pour le PNUD conformément à la décision 72/40;
 - c) De déduire 0,035 tonnes PAO de HCFC-22 de la consommation de HCFC restante admissible au financement ; et
 - d) D'exhorter le Gouvernement du Costa Rica et le PNUD d'achever le projet comme prévu dans un délai de 14 mois, et de soumettre un rapport final complet peu après l'achèvement du projet.

PROJECT COVER SHEET

TYPE OF PROJECT	Demonstration project funding request
TITLE OF THE PROJECT	Demonstation of the application of R717/R744 system in replacement of the HCFC-22 for the medium sized producer and retail store of Premezclas Industriales S.A. in Costa Rica
COUNTRY NAME	Costa Rica
IMPLEMENTING AGENCY	UNDP
GOV. COUNTERPART	Ozone Unit of Costa Rica. Government of Costa Rica.

DATES OF RATIFICATION OF AMENDMENTS TO THE PROTOCOL			
London	June 1998	Copenhagen	June 1998
Montreal	May 2005	Beijing	October 2008

GENERAL INFORMATION				
Sector / Sub-sector	Refrigeration and Air Conditioning / Food Industry-Retail			
ODS Consumption (sector)	8.56 ODP t.			
Baseline	14.1 ODP t.			
Starting Point for Aggregate Reductions	14.1 ODP t.			
Project Impact (ODP t.)	0.0351 ODP t			
Participating Company (ies)	Pre Mezclas Industriales de Panadería S.A. (PINOVA)			
Eligibility of participating company (ies)	mpany (ies) 100 % (A5) 0 % (non-			
Project Costs (US \$)	984,595.56			
MLF Requested Funding (US \$)	524,000.00			
I.A. Supporting Costs (US \$)	36,680.00 (7%)			
Total cost of the Project for the MLF (US \$)	560,680.00			
Project Duration (months)	14			

PROJECT PROPOSAL SUMMARY

The proposed demonstration project will partner with the company *PreMezclas Industriales de Panadería S.A.*, taking advantage of their planning and co-finance to replace the existing HCFC-22 based refrigeration systems, by adding the incremental benefit of overlapping the use of HFCs-based system for their commercial refrigeration application through the use of the natural refrigerants system.

The project is based on the adoption of a two stage Ammonia/CO2 system. In this setting, a reduced charge of Ammonia is expected in the primary cooling circuit (which is also to be installed as an external unit to the plant). In the other hand, liquid CO2 is to be circulated as secondary cooling, but a subcritical pressure, reducing the costs of the installation

The project will look into the removal of barriers to the adoption of this technologies by supporting partners to assess parts and pieces, deliver specialized training and look at legal/institutional barriers for the replication of this demonstration, and also has the objective to deliver higher energy efficiency, both compared to the baseline system (HCFC-22) and to the preferred system (R-404a). This project would be highly complementary to Costa Rica's effort of becoming Carbon Neutral by 2021.

The total cost of the project is USD 984,595.56, being that USD 524,000.00 is being requested from the Multilateral Fund, while USD 460,595.56 will be co-financed by the participatory company

Project Prepared by: Rodolfo Hernandez Technical review: Dr. Roberto Peixoto

INTRODUCTION

- 1. The agreement to accelerate the phase-out of the HCFCs consumption under the Decision XIX/6 also brought a growing concern to the Article 5 countries related to the establishment HCFCs replacement's policies that could also promote the use of low-GWP technologies, in order to maximize the effects over the climate change issue.
- 2. This is the case for the country of Costa Rica. Costa Rica had its HCFCs Phase-out Management Plan (HPMP) approved in the 64th Meeting of the Executive Committee (ExCom) for the Implementation of the Montreal Protocol. The HPMP pledged to start controlling the consumption of HCFCs with the freezing of its imports starting in 2013, with reference to the baseline reported for the period 2009-2010 (14.1). The first reduction of 10% over the baseline level will be held in 2015 and the second from 35% in 2020. The total amount approved for the implementation of the project was U.S. \$ 1,240,037 (U.S. \$ \$ 1,153,523 for project costs and U.S. \$ 86.514 for support costs).
- 3. On the Legal and Institutional Framework part, the country has established a complete legal framework aimed to protect the environment, counting with some norms and regulation to protect specifically the ozone layer. Since 2010, Costa Rica applies a licensing system for the import of HCFC and HFC implemented by the National Ozone Unit (NOU), Bureau of Environmental Quality Management and Energy Ministry of Environment (MINAE), in coordination with the Directorate General of Customs, Ministry of Finance and Trade Office the Ministry of Foreign Trade. In this sense, Costa Rica is in compliance with its obligations in front of the Montreal Protocol.

2013 2014 2009 **SUSTANCIA** 2008 2010 2011 2012 0,84 0.91 5.94 HCFC-124 3.20 1.95 0.00 2.31 182.16 178.26 HCFC- 22 309.53 137.28 192.81 171.77 338.62 23.41 23.15 HCFC- 141b 1.77 9.01 36.89 29.56 48.61 2.42 2,93 HCFC - 142b 1.29 0.00 7.15 0.00 9.36 2.91 2.91 HCFC - 123 0.71 0.00 0.06 0.54 0.00 143.54 208.47 217.76 368.18 370.35 211.74 208.16 **SUBTOTAL** NR 11.14 HCFC- 141b in FFS* 161.56 170.00 143.54 208.47 379.32 538.18 370.35 211.74 219.3 **TOTAL**

Table 1 - HCFC consumption as per Country Programme Report, Costa Rica

*Fully Formulated Systems and/or Preblended Polyols

- 4. On the technical side, currently, the HPMP is undertaking several field actions to support the country achieving its HCFCs staggered reductions. These interventions included the f reconversion of the Domestic Refrigeration producer with the adoption of hydrocarbons as blowing agent. In the RAC servicing sector, the NOU has been working with the National Training Institute (INA) and the aforementioned training institutions to assess their needs, improve RAC practicing laboratory and improve and deploy a better training on RAC best practices in order to prepare technicians to absorb new replacement technologies to HCFCs.
- 5. The HPMP had envisaged HCFCs phase-out actions both in the Polyurethane Foams (PU Foams) and the Refrigeration and Air Conditioning (RAC) sectors. Although all activities in the HPMP are

progressing well, it is clear that the PU Foam sector has a better established technology base in terms of availability and technical knowledge available to convert HCFC-141b based industries to non-ODS and low-GWP alternatives.

- 6. However, this situation is still not completely clear for the interventions required do phase-out the consumption of the HCFC-22 (and other HCFC-based commercial refrigerant blend) in order to overlap HFCs and establish the basis for the adoption of final low-GWP solutions. In this sense, it has been noted that the market trend to use HFCs-based technologies as interim solutions, due to the relative low cost in comparison to flammable and toxic low-GWP alternatives. And also because of the established knowledge basis on the application and maintenance of such HFCs systems that is readily available.
- 7. In this sense, specific technical assistance work is being undertaken in order to expand the knowledge base of the training facilities of the country. Some specialized courses will be available from 2016 onwards in Costa Rica through INA using natural refrigerants in industrial refrigeration (Ammonia). Best practices in and air conditioning maintenance will also be promoted using a bilateral cooperation with the Colombian technical institute (SENA). In partnership with the Brazilian Training Institute (SENAI), refrigeration course curriculum is also being reviewed and upgraded truing to focus on the use of natural refrigerants (hydrocarbons for light commercial refrigeration). Also working with the public universities to introduce in the academic curriculum, the new technologies based in natural refrigerants as national strategic to increase knowledge in the new engineer professionals.
- 8. Despite all the efforts undertaken by the Government of Costa Rica to introduce low-GWP technologies, being mostly natural refrigerants aimed, barriers to their adoption at commercial scale still exist. It is acknowledged that drivers to technology change must be either precedent or followed for technically proven, commercially available and ready-to-use alternatives that, are not only able to be used in the HCFCs consuming sectors, but that are also suitable (or adapted) to regional/local specific requirements that, today, are barriers for their fully implementation.
- 9. These barriers are related to lack of technical standards, almost no availability of parts and pieces, lack of an organized trained focused on the specific application (since due to financial restrictions and due to the scope of the training institutes, training usually focus more on the generic application of refrigeration and good practices, and many times lack specific hands on training on stratified applications, such as light weight commercial refrigeration, centralized commercial refrigeration systems, self-contained commercial refrigerators and etc.).
- 10. This is the case for the application of Ammonia/CO2 (R-717/R-744) systems in the food production and distribution sub-sector for mid to high ambience temperature countries. Pure Ammonia systems are, in one hand, a very well established technology for the application at large commercial/industrial scale, mainly for quick frozen applications. In the other hand, it is noticed the mixed Ammonia/CO2 applications are being improved in northern countries where colder temperatures, extensive training and a very well established legal basis set the grounds for a safe and efficient use of those refrigerants in a combined manner.
- 11. In this sense, this demonstration project proposal aims to apply an Ammonia/CO2 refrigeration technology in a food producer and retail company located in the city of San José, Costa Rica. This innovative approach will use a two stages system where Ammonia will serve as primary refrigerant by pumping CO2 at sub-critical pressure as the secondary coolant throughout the facility. This approach, at the first, substantially reduce the supercritical risk associated with the high working pressure of CO2, and

in the other hand, reduce the risk of the use of Ammonia by applying a lower charge system in an external installation limiting exposure risk of the users of the facility.

- 12. The proposed demonstration project will partner with the company *PreMezclas Industriales de Panadería S.A.*, taking advantage of their planning and co-finance to replace the existing HCFC-22 based refrigeration systems by adding the incremental benefit of overlap the use of HFCs-based system for commercial refrigeration through the application of the proposed natural refrigerants system and delivering higher energy efficiency, both compared to the baseline system (HCFC-22) and to the preferred system (R-404a).
- 13. The project will look into the removal of barriers to the adoption of this technologies by supporting partners to assess parts and pieces, deliver specialized training and look at legal/institutional barriers for the replication of this demonstration.

OBJECTIVES

- 14. The implementation of the proposed project in Costa Rica can demonstrate to other developing countries, mainly the ones with higher ambient temperatures, that the application of Ammonia and CO2 technologies can be safely deployed in the field. Moreover, this system can configure a better solution to countries that have limitations to use supercritical CO₂ in direct expansion (as high ambient ones), or countries that one to overlap HFCs alternatives (since it has been noticed that developing countries tend to use cascade CO₂ systems (CO₂ sub critical), operating under subcritical conditions, but mostly using the R-404a with reduced charges as secondary fluid.
- 15. Therefore, the expected objectives of the project are:
 - (a) To demonstrate the use of NH₃/CO₂ as an alternative to use in the refrigeration systems suitable to small to medium sized companies (applied in the assembling and maintenance sectors).
 - (b) To promote the replicability of the technology by supporting the supply chain (parts, assembling companies, local cabinets and rack producers and maintainers) in absorb it and make it available to local companies.
 - (c) To facilitate the transfer the technology to potentially interested companies in the future (replication).
 - (d) To reduce the operative costs of the system;
 - (e) To reduce energy consumption;
 - (f) To significantly reduce the direct emissions of CO₂-eq gases;
 - (g) To improve the training capacities of the partner to apply and maintain natural refrigerants that pose toxic risks and technical challenges in terms of working pressure;
 - (h) To identify and put in place a real case example to enable the country to remove barriers to the adoption of toxic, flammable and high pressure systems with a natural refrigerants;
 - (i) To Phase-out the consumption of 909kg of HCFC-22 of the partner company of the project.

EXPECTED RESULTS

- 16. The expected results of the project are:
 - (a) First food producer and retailer in the Central American and the Caribbean Region reconverted and applied a two stage NH₃/CO₂ system;
 - (b) Economic, Financial and technical feasibility demonstrated for the NH₃/CO₂ project conversion in comparison to standard single Ammonia direct expansion system;
 - (c) CO₂ equivalent impact reduced through the elimination of source of direct emissions.
 - (d) Technology and technical scenario in Costa Rica improved through the Project interventions.
 - (e) Technical standards for the application of NH₃/CO₂ drafted;
 - (f) Identify energy consumption (if any) reduction that may be achieved by the end of the Project.

SECTOR BACKGROUND

- 17. With the exception of the local manufacturing of domestic refrigerators, Costa Rica does not have production of refrigeration and air conditioning equipment. All HCFCs consumption is directed to the assembling and servicing sectors in the country.
- 18. As a "technology taker", Costa Rica depends on imports of finalized equipment or its parts so, specifically, commercial refrigeration systems are assembled in the country to meet the market demands (for central equipment). For the self-contained applications of commercial refrigeration (freezers, displays, vending machines, etc.) and for the air conditioning subsector, all equipment is imported and, for this reason, the country is also highly dependent on the technology available at the production source.
- 19. Currently, it is still identified a demand for HCFC-based equipment which is basically constrained by the obligations under the Montreal Protocol and the work undertaken by the Government through its HPMP. As interim solution, the most common alternative being used in the country are HFC-based ones (for example: R-410A for air conditioners, R-404a for commercial refrigerators). This fact is due to the relative low cost of such technologies in front of other that use natural refrigerants; the lack of standards that would enable the conditions for transportation, sales and use; and the lack of specific training for each of the recipient application.
- 20. However, it is recognized that the country has certain familiarity with direct Ammonia application in the large industrial sector. However, this is a very unique issue, since these applications are guided by international standards; usually are multinational companies applying those; the Ammonia is constrained at external equipment and the plants are installed in proper industrial zones were the exposure risks become minimal; and there is relative small number of very specialized RAC assembling and servicing companies that received international training to oversight, operate and maintain such equipment.
- 21. On the other hand, it is difficult to absorb other alternatives, such as CO₂ and Hydrocarbons in the RAC sector, precisely because the country lacks the features highlighted above. On top of that, the phase-in costs are higher in the country because all equipment must be imported.

- 22. It is under this scenario that this demonstration project is being proposed: a partnership with the company *PreMezclas Industriales de Panadería S.A.*, taking advantage of their planning and co-finance to replace the existing HCFC-22 based refrigeration systems by adding the incremental benefit to overlap the use of HFCs-based system for commercial refrigeration through the application of the NH₃/CO₂ "brine" system in order to reduce CO₂-equivalent direct emissions and achieve higher energy efficiency
- 23. The technology choice was based on the fact that this would be the first two stage NH₃/CO₂ "brine" refrigeration technology in a food producer and retail company located in the Central American and Caribbean regions. This innovative approach will use a two stages system where Ammonia will serve as primary refrigerant by pumping CO₂ as the secondary coolant throughout the facility. This approach, at the first, substantially reduce the supercritical risk associated with the high working pressure of CO₂, and in the other hand, reduce the risk of the use of Ammonia by applying a lower charge system in an external installation limiting exposure risk of the users of the facility The energy efficiency and cost comparison will be made against the baseline system (HCFC-22) and to the initially preferred system (R-404a).

INSTITUTIONAL ARRANGEMENTS

I. Legal and Regulatory Framework

- 24. The country Costa Rica has currently regulations that are specifically for HCFCs import/export controlling, as well as a fully functional import quota system in place since 2013. The Government is able regulate importation, trade and usage of any ODS that is controlled under the Montreal Protocol. Unregistered companies are not allowed to import, export, market and/or use ODS. It is prohibited to use CFCs substances in new systems, equipment and products, national and imported, and under the HPMP, supported with the results of this demo, a stringent sector approach to prohibit use and ban consumption of HCFCs may be put into practice to support the country to meet the Montreal Protocol obligations.
- 25. Imports and exports of all ODS are subject to registration at customs and can be made subject to quota's when need arises. An issue, however, is ODS contained in systems and equipment, as custom registration does not identify these.

II. Institutional Structure

- 26. The Ministry of Environment and Energy has the mission of promote the adoption of principles and strategies to the knowledge, protection and recovery of natural resources; the improvement of the value of the environmental services; and insertion of sustainability development on the formulation and implementation of public policies, in participative and democratic manner. The Ministry of Environment and Energy also acts as National Ozone Unit for the MP and coordinates the formulation and implementation of all projects funded by the MLF.
- 27. Under this proposed project, UNDP will serve as implementation agency (IA) working in close coordination with the Ministry of Environment and Energy, through the National Ozone Unit (NOU), which will act as executing agency for the project implementation.

- III. Implementation Approach
- 28. The implementation modality to be used in this specific project preparation proposal will be through NIM (National Implementation Modality).
- 29. Under this implementation modality UNDP will be responsible for:
 - Deliver technical and administrative support to the NOU;
 - Undertake the oversight and monitor the implementation;
 - Facilitate payments and undertake audits;
 - Prepare contracts and other legal documents required for the implementation of the activities;
 - Support the Government in procurement processes, hire international and local experts and service providers required to assure the good implementation of the Project;
 - Participate in the Project Steering Committee;
 - Assure that the Montreal Protocol's and the ExCom's guidelines and Decisions are effectively implemented;
 - Deliver training to the implementation training when required; and
 - Recollect project information, organize findings and report back to the MLF.
- 30. The National Ozone Unit will be implementation partner of the project being responsible for:
 - Formulation of specific legislation and guidelines required for the project implementation;
 - Draft, in close coordination with relevant institutions and stakeholders, guidelines and standards required for the project implementation; and support their approval process;
 - Undertake the implementation of the projects activities in the field, with assistance from UNDP;
 - Collect and organize information generated by the project;
 - Coordinate activities with the stakeholders, undertake awareness necessary for the Project implementation;
- 31. The NOU is housed by the Ministry of Environment (MINAE) and is the focal point for all matters related to the Montreal Protocol in the country.
 - IV. Government Commitment's to the Project
- 32. The Government of Costa Rica is fully committed to the proposed demonstration project. The Annex I of this document brings the Transmittal Letter of the Government of Costa Rica confirming its full commitment to the project, informing the forecast for its completion that not exceeds 14 months.

PARTICIPATING COMPANY

33. This pilot project is designed around the recipient company Pre Mezclas Industriales para Panadería S.A. Contact information is as follows:

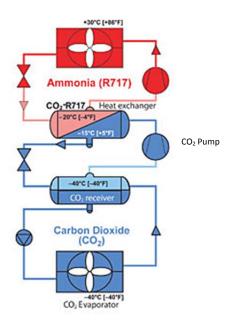
Company:	Pre Mezclas Industriales para Panadería S.A
Contact:	Adrian Bonilla Astua
Address	San Jose, Uruca
Phone:	2437-7700
E-mail:	adrian.bonilla@musmanni.com
Website (if any):	www.musmanni.com
Foundation date:	1980
Capital:	100% Costa Rica
HCFC installed capacity	2011: not available
(kg) in all units(including	2012: 680.56
service demand per year)	2013: 387.23
	2014: 461.14
	2015: 1,353.10

34. The Annex II of this project preparation funding request brings the Letter of Commitment of the company, confirming its full commitment to the project, informing the forecast for its completion expected to be within 12 (twelve) months.

35.

PROJECT DESCRIPTION

- 36. The company *Pre Mezclas Industriales de Panaderia S.A.* currently operates with three prechambers and one chamber for final products with 50 tonnes of refrigeration (TR) capacity and storage capacity of 150 metric tonnes (MT). As of today, the systems runs with a 15 years old HCFC-22 central unit composed by by two scroll compressors (60 hp each) and 14 heat exchangers. Currently, the system has 909kg of refrigerant charged, being that in 2015 this same unit has demanded 639kg (0.0351 ODP t) of HCFC-22 for recharge due the maintenance requirements (consumption). The system has an energy demand of 136,031 kwh/month, responding for 18% of the total energy consumption of the facility.
- 37. This proposed project will allow the company to reduce to zero its HCFC demand, allowing the company to achieve another step required for the public plan of carbon neutrality signed with the Government and support Costa Rica also de reduce its HCFC consumption.
- 38. The project is based on the adoption of a two stage NH₃/CO₂ system. In this setting, a reduced charge of Ammonia is expected in the primary cooling circuit (which is also to be installed as an external unit to the plant). In the other hand, liquid CO₂ is to be circulated as secondary cooling, but a subcritical pressure, reducing the costs of the installation (when compared to other supercritical/subcritical CO₂ systems) and also almost eliminating the associated risk with pressure.
- 39. It is important to highlight that Costa Rica has some experience with the use of direct expansion systems charged with ammonia in the very large scale industrial sector. However, this affirmation cannot be applied to the use of CO₂, since no facility in the country operates this technology. Moreover, capacities to install, operate and maintain a dual NH₃/CO₂ system will need to be built under the proposed demonstration project.
- 40. The technology proposed was chosen after a thorough review of the needs of the company, the country's set and the beneficial replication/scale up benefits sought at the regional and global level. It is

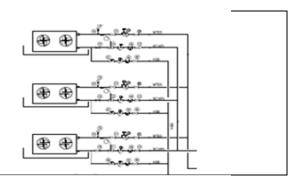

anticipated that the technology could be easily replicate to Article 5 countries, mainly those ones with high ambient temperatures.

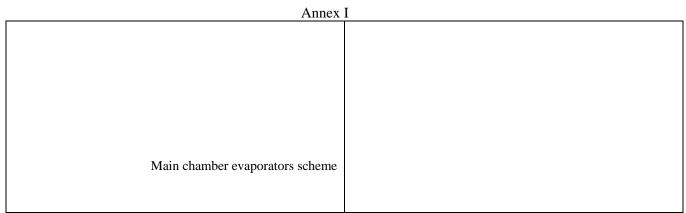
41. In this sense, the following technical parameters of the recipient's plant had to be carefully weighted:

Table 3. Technical Requirements of PreMezclas Plant:

Feature	Requirement			
Chambers temperature:	-20° Celsius			
Chambers Humidity	70%			
Maximim Storage Capacity	250 MT			
Intake product frozen temperatura	-16° Celsius			
Outake product frozen temperatura	-11° Celsius			
Avarage Residence time of the product in the chamber	7 days			
Electrict Voltage	480 v			

42. In this sense, the two stage NH₃/CO₂ system is expected to be mounted as the following diagram:


Diagram 1 – simplified working scheme


Source: http://www.process-cooling.com/

- 43. The proposed system is commercially known as "brine", suitable for applications at temperatures ranging from -5oC to -40oC (being able to meet requirements from commercial refrigeration and industrial chambers). The system uses direct expansion of Ammonia in the primary system, a heat exchanger that will allow the exchange of heat between Ammonia and CO_2 , and a pumping system to circulate liquid CO_2 in low pressure throughout the facilities (so there is no exposure risk inside the facility and to the foods). The main components required to assemble this system are:
 - Primary cooling system for Ammonia

- Heat exchanger for the secondary unit (NH₃/CO₂)
- Liquid CO₂ pumping station
- CO₂ Evaporator.
- CO₂ and NH₃ condenser.
- 44. The proposed system has the following benefits:
 - Ammonia is used in the primary unit (high pressure) to condensate the CO₂;
 - Lower charge of Ammonia in the system;
 - There is no charge of Ammonia in the evaporators (lower venting risks);
 - There is no contamination risk over the final product;
 - The CO2 is condensate without compression (no pressure risk), no compressor for CO₂;
 - No lubricant oil in the secondary cooling system;
 - No high pressure resistant (and therefore, lower cost) tubing in the secondary system;
 - Smaller diameters of tubes in the secondary system;
 - Full compatibility between materials;
 - Latent heat of CO2 is better used (approx. 30X more efficient than other secondary coolants);
 - Lower energy consumptions (anticipated to be 20-30% less than the baseline system).
- 45. On the other hand, some disadvantages must be taken into consideration when designing the system:
 - High pressure of overall design;
 - Higher initial investment cost (when compared to HCFC or HFC systems).
 - Higher pressure if the system is shut down.

Pre-chambers evaporators scheme (1 per pre-chamber)

Diagram 2 – detailed working scheme of evaporators

46. Due to the efficiency of the new proposed system, the new thermal load was calculated in 75.8TR, against 150 TR of the HCFC-22 current in operation. The specific list of equipment and parts required for the project implementation are the following:

<u>Table 4 - List of Equipment (and cost breakdown - USD)</u>

Quantity	Description	Cost Unitary	Total Cost		
		\$USD	\$USD		
3	CO2 Evaporators. 17.6 TR each	19,068.00	57,204.00		
1	CO2.Evaporators 8.2 TR each	12,207.00	12,207.00		
3	CO2.Evaporators 6.5 TR each	4,678.00	14,034.00		
1	Liquid CO2 Tank/Reservoir	15,572.00	15,572.00		
2	Liquid CO2 centrifugal pumps	9,702.00	19,404.00		
1	Heat Exchanger (NH3 to CO2).	36,953.00	36,953.00		
1	CO2 Valves and Controls kit.	47,494.00	47,494.00		
1	Liquid/Gas separator for NH3.	9,138.00	9,138.00		
1	Oil separator tank.	2,023.00	2,023.00		
2	Scroll compressor for NH3 38.9 TR each. (including parts)	81,970.00	163,940.00		
1	Evaporative condenser for NH3 (including parts)	54,685.00	54,685.00		
1	Thermo tank to compressor oil cooling.	4,267.00	4,267.00		
1	Reservoir for liquid NH3.	6,312.00	6,312.00		
1	NH3 Valves and Controls kit.	43,018.00	43,018.00		
1	Control panel. (Power, Control and PLC)	83,856.00	83,856.00		
1	PU foam insulating kit for the tubing. 9,138.00				
	Total equipment		579,245.00		

Table 4.1 - Detailed List of Evaporators

Chamber	Quantity of evaporators	Unit Capacity (TR)	Capacity total (TR)
Chamber 4 final product	3	17.6	61
Chamber 4, final product	1	8.2	01
Chambers 1, 2 and 3 (unfinished products, charging and maneuvering areas)	3	6.5	19.5

47. It is important to highlight that the adoption of this technology demands tighter controls, monitoring and maintenance practices for both refrigerants. Capacity needs to be built on such pre-

requisites to assure proper handling and avoid accidents. It is correct that the design of the installation is made to reduce leakage risks. However, even with risks reduced and smaller charges, Ammonia is a toxic substance, and Costa Rica will endeavor efforts to adopt proper technical guidelines and standards to enable the conditions to the safe applications and further replication of the project (specifically, but not limited to, the ASHRAE Standard 34).

48. This knowledge is expected to be built within all level of the supply chain (including the support to make parts and knowledge on use available), training institutions and engineering universities in the country. (Removal of barriers component).

PROJECT BUDGET

49. The table 5, below, informs the budget breakdown by investment component of the project.

Table 5 – Investment Component Project Budget

Tuble 2 Investment Component Project Budget					
Item	USD				
Equipment	579,245.00				
Demurrage and delivery of imported equip.	17,529.65				
Physical Structure adaptation (civil Works)	43,206.20				
Assembling, Installation and Comissioning	191,348.51				
Registration and Homologation of Engineering Plans	13,266.20				
Contingencies	60,000.00				
Total Equipment	904,595.56				

50. Additionally, as highlight in the project's objectives, the demonstration proposal will also look in to the removal of barriers needed to apply the technology and secure its further replication. In this sense, the additional technical assistance costs are estimated:

Table 6 - Technical Assistance Project Budget

Item	USD
International Expert	30,000.00
National Expert	25,000.00
Capacity Building (Pilot Training)	25,000.00
Total TA	80,000.00

51. Finally, the project budget can be summarized as follows:

<u>Table 7 – Summary Project Budget</u>

	T4000	MLF Funding	Co-funding	TOTAL
Component	Item	USD	USD	USD
	Equipment	344,000.00	234,245.00	579,245.00
Component 1.	Demurrage and delivery of imported equip.	-	17,529.65	17,529.65
Equipment &	Physical Structure adaptation (civil Works)	-	43,206.20	43,206.20
Reconversion	Assembling, Installation and Comissioning	100,000.00	91,348.51	191,348.51
Process	Registry and Homologation of Engineering Plans	-	13,266.20	13,266.20
	Contingencies	-	60,000.00	60,000.00
	Subtotal Equipment	444,000.00	460,595.56	904,595.56
	International Expert	30,000.00	-	30,000.00
Component 2.	National Expert	25,000.00	-	25,000.00
Technical	Regulatory and Standard Framework	7,500.00	-	7,500.00
Assistance	Capacity Building (Pilot Training)	25,000.00	-	25,000.00
	Completion workshop	10,000.00	-	10,000.00
	Contingencies		-	10,500.00
	Subtotal Technical Assistance		-	80,000.00
	GRAND TOTAL	524,000.00	460,595.56	984,595.56

IMPLEMENTATION PLAN/TIMESCALE

	Month													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Administrative Support and Oversight	Administrative Support and Oversight													
Project Approval														
Receipt of Funds														
Project Document														
Consultants Hired														
Monitoring														
Operational Closure														
Financial Closure														
PCR (up to 6 months later closure)														
Component 1														
Approval of Engineering Plans														
Design of Technical Specifications														
Procurement of Equipment														
Adaptation/Civil Works														
Installation/Commissioning														
Start up														
Energy Consumption Measures														
Component 2	Component 2													
Review of Standards														
Draft of Standards														
Consultation Meetings														
Training														
Project Report														
Closure Workshop	-	-	-	-	-	-	-	-	-	-	-	-	-	-

FINAL REPORT

- 52. All the activities undertaken at and by the Company Premezclas will be monitored and registered under the Project. This information will be analyzed and systematized in order to form part of the Final Report on the project implementation to be submitted to the MLF.
- 53. It is anticipated that the project will undertake and register the working conditions of the current HCFC-22 based system, undertake energy consumption measures and register all information deemed necessary.
- 54. The project implementation will be assisted and evaluated by the International Expert in charge of it. He/she will deliver high level technical guidance during the conversion process and will lead the process of collect data and report to both UNDP and the MINAET.
- 55. Information about cost, barriers, challenges and lessons learned will be gathered and will compose the Final Report, as well as an analysis of the cost-benefit of the process and energy savings generated by the new system

56. Finally, the report is expected to be submitted to the second meeting of the ExCom of 2017, followed by a regional workshop to be held in Costa Rica that will serve to disseminate the project results, findings, recommendations and lessons learnt to interested parties. The Report is also expected to be shared with other National Ozone Units and private sector.

RISK ASSESSMENT

Risk	Degree	Action
Cost of technology	High	Project will provide co-funding to minimize
		this risk and serve as driver of change
		towards low-GWP technology.
Lack of Information on the technology	Medium	Promote close collaboration between GOV
		and private sector (international suppliers and
		national stakeholders) in order to allow wide
		access to information and data on the
		technology.
Lack of skilled people in the country	High	Create and establish a training programme
		suited to the application of proposed
		technology and promote cooperation with
		national technical institutes and universities
		to replicate the training contents and
Lock of local monte and comices muscidens	III ala	incorporate those in their curricula. Involve national stakeholders in the
Lack of local parts and services providers	High	Involve national stakeholders in the technology assessment and dissemination
		process. Assure the continuous flow of
		information. Facilitate contacts between
		national and international suppliers. Review
		institutional and regulatory barriers to import
		procedures (and barriers) and deploy training
		to "popularize" the technology.
Lack of trust in the application of	Medium	Create/adopt technical standards. Overcome
technology		barriers and paradigms that may block the
		technology update. Undertake awareness
		campaign to promote the technology.

ANNEX I

GOVERNMENT TRANSMITAL LETTER

ANNEX II

PARTICIPATING COMPANY LETTER OF CONFIRMATION

