Программа Организации Объединенных Наций по окружающей среде Distr. GENERAL UNEP/OzL.Pro/ExCom/75/68 23 October 2015 RUSSIAN ORIGINAL: ENGLISH ИСПОЛНИТЕЛЬНЫЙ КОМИТЕТ МНОГОСТОРОННЕГО ФОНДА ДЛЯ ОСУЩЕСТВЛЕНИЯ МОНРЕАЛЬСКОГО ПРОТОКОЛА Семьдесят пятое совещание Монреаль, 16-20 ноября 2015 года #### ПРОЕКТНОЕ ПРЕДЛОЖЕНИЕ: ТАИЛАНД В настоящем документе приводятся замечания и рекомендации секретариата Фонда по следующим проектным предложениям: #### Пеноматериалы • Демонстрационный проект на системных предприятиях по выпуску пеноматериалов в Таиланде, реализуемый с целью разработки готовой смеси полиола для нанесения пенополиуретана напылением с использованием вспенивателя с низким потенциалом глобального потепления Всемирный банк # ФОРМА ОЦЕНКИ ПРОЕКТА – НЕМНОГОЛЕТНИЙ ПРОЕКТ ТАИЛАНД # название(я) проекта двустороннее учреждение/учреждение-исполнитель | a) | Демонстрационный проект на системных предприятиях по выпуску | Всемирный банк | |----|---|----------------| | | пеноматериалов в Таиланде, реализуемый с целью разработки готовой | | | | смеси полиола для нанесения пенополиуретана напылением с | | | | использованием вспенивателя с низким потенциалом глобального | | | | потепления | | | НАЦИОНАЛЬНОЕ КООРДИНИРУЮЩЕЕ | Департамент промышленных объектов, Министерство | | | |-----------------------------|---|--|--| | УЧРЕЖДЕНИЕ | промышленности Федерация промышленности | | | | | Таиланда | | | #### ПОСЛЕДНИЕ ПРЕДСТАВЛЕННЫЕ ДАННЫЕ О ПОТРЕБЛЕНИИ ОРВ, ОТНОСЯЩИХСЯ К ПРОЕКТУ #### А. ДАННЫЕ, ПРЕДСТАВЛЕННЫЕ В СООТВЕТСТВИИ СО СТАТЬЕЙ 7 (В ТОННАХ ОРС, 2014 г.) | ГХФУ | | 863,32 | |------|--|--------| |------|--|--------| # В. СЕКТОРАЛЬНЫЕ ДАННЫЕ В СТРАНОВОЙ ПРОГРАММЕ (В ТОННАХ ОРС, 2014 г.) | ГХФУ-22 | 647,04 | |---|--------| | ГХФУ-123 | 2,72 | | ГХФУ-141b | 174,87 | | ГХФУ-124 | 0,10 | | ГХФУ-225 | 2,75 | | ГХФУ-141b в импортированных предварительно смешанных полиолах | 11,19 | | Остаточное потребление ГХФУ, подпадающее под финансирование (в тоннах ОРС) 708,56 | |---| |---| | АССИГНОВАНИЯ ДЛЯ БИЗНЕС-ПЛАНА | | Финансирование в млн | Поэтапный отказ от | |-------------------------------|----|----------------------|--------------------| | ТЕКУЩЕГО ГОДА | | долл. США | ОРВ в тоннах | | | a) | н/п | н/п | | НАЗВАНИЕ ПРОЕКТА: | | |--|----------| | Потребление ОРВ на предприятиях (в тоннах ОРС): | 38,94* | | ОРВ, подлежащие выводу из обращения (в тоннах ОРС): | 3,85 | | ОРВ, подлежащие поэтапному внедрению (в тоннах ОРС): | 3,85 | | Продолжительность проекта (в месяцах): | 12 | | Первоначально запрошенная сумма (в долл. США): | 397 100 | | Окончательная стоимость проекта (в долл. США): | | | Дополнительные капитальные расходы: | 323 550 | | Непредвиденные расходы (10 %): | 32 355 | | Дополнительные эксплуатационные расходы: | 0 | | Общая стоимость проекта: | 355 905 | | Местное владение (%): | 100% | | Компонент экспорта (%): | 0% | | Запрошенная дотация (в долл. США): | 355 905 | | Рентабельность (в долл. США/кг): | 10 | | Эксплуатационные расходы учреждения-исполнителя (в долл. США): | 24 913 | | Общая стоимость проекта для Многостороннего фонда (в долл. США): | 380 818 | | Параллельное финансирование (да/нет): | нет | | Включение контрольных точек мониторинга проекта (да/нет): | да | | *D | 4.14 ODC | *Все виды применения. Потребление в составе напыляемого пеноматериала: 4,14 тонны ОРС РЕКОМЕНДАЦИЯ СЕКРЕТАРИАТА Рассмотрение в индивидуальном порядке #### ОПИСАНИЕ ПРОЕКТА - От имени правительства Таиланда Всемирный банк представил в качестве назначенного учреждения-исполнителя на 75-м совещании заявку на финансирование демонстрационного проекта в целях аттестации использования двух гидрофторолефинов (ГФО) (ГФО-1233zd(E) и ГФО-1336mzz(Z)) для напыляемых пеноматериалов путем разработки смеси двумя системными предприятиями, технического тиражирования и распространения результатов в объеме 397 100 долл. США плюс эксплуатационные расходы учреждений в 27 797 долл. США. - В соответствии с решением 72/401 Исполнительный комитет утвердил финансирование для 2. подготовки данного проекта в сумме 30 000 долл. США при том понимании, что его утверждение не означает утверждения проекта или объема его финансирования при подаче соответствующей заявки (решение 74/362). Представленное предложение приведено в приложении I к настоящему документу. #### Цель проекта - 3. В рамках проекта предлагается: - a) укрепить возможности двух местных системных предприятий разрабатывать, тестировать и производить готовую смесь полиола с использованием ГФО для малых и средних предприятий в секторе производства напыляемого пенополиуретана; - b) аттестовать использование ГФО, напыляемого совместно с СО2, в качестве вспенивателя для напыляемых пеноматериалов, оптимизировать соотношение $\Gamma \Phi Y^3 / \Gamma \Phi O$ для получения аналогичных теплоизолирующих свойств, которые обеспечивает ГХФУ-141b, при минимальных дополнительных эксплуатационных расходах и аттестовать смеси, соотношение $\Gamma \Phi Y / \Gamma \Phi O$ в которых снижено до 10%; - c) подготовить анализ затрат по использованию смесей с различным сниженным соотношением ГФУ/ГФО в сопоставлении с используемыми в настоящее время смесями на основе ГХФУ-141b; и - d) распространить результаты оценки среди системных предприятий в Таиланде и в других странах. #### Общие сведения о секторе и обоснование - В секторе пенополиуретана Таиланда насчитывается 215 предприятий, использующих 1 723 метрических тонн (мт) ГХФУ-141b (основная часть которого содержится в смешиваемых на месте полиолах) для производства жестких пеноматериалов (включая нанесение напылением), интегрального пенополиуретана и эластичного пенополиуретана. 53 из этих предприятий считаются "микропредприятиями", поскольку они потребляют менее одной мт ГХФУ-141b в год. - 5. На этапе І ПОДПО было выведено из обращения 1 517 мт ГХФУ-141b во всех сферах применения пенополиуретана, за исключением потребления 349,1 мт ГХФУ-141b, используемой 3 $^{^{1}}$ Исполнительный комитет постановил, кроме всего прочего, изучить на своих 75-м и 76-м совещаниях предложения по демонстрационным проектам касательно альтернатив ГХФУ с низким потенциалом глобального потепления в рамках созданной структуры и определил критерии для таких проектов. ² На 74-м совещании Исполнительный комитет изучил заявки на подготовку проектов по демонстрации технологий с низким потенциалом глобального потепления и анализа реализуемости централизованного районного холодоснабжения. ³ На данном этапе ГФУ-245fa рассматривается в качестве переходного решения для регулирования расходов, так как вопрос цены и наличия ГФО остается неопределенным. ⁴ Базовый год: 2010 в соответствии с ПОДПО, утвержденным на 68-м совещании. на 30 предприятиях для напыляемых пеноматериалов ввиду отсутствия альтернатив с низким потенциалом глобального потепления (ПГП) для этого вида применения. В период между 2010 и 2015 годами его потребление возросло до 585 мт. Напыляемые пеноматериалы используются главным образом для крыш, холодильных камер, рыболовных судов, пассажирских автобусов, резервуаров для хранения и цистерн с теплоизоляцией. - 6. В странах, не действующих в рамках статьи 5, $\Gamma \Phi \text{У}$ -245fa ($\Pi \Gamma \Pi$: 1 030) является превалирующим техническим вариантом для замены $\Gamma \text{X}\Phi \text{V}$ -141b в качестве вспенивателя для напыляемых пеноматериалов. Были разработаны смеси со сниженным содержанием $\Gamma \Phi \text{V}$ -245fa на уровне 7,5 10% для сокращения воздействия на климат и расходов, но была повышена вязкость предварительно смешанных полиолов, что может нарушать работу используемого оборудования для распыления пены. - 7. ГФО-1233zd(E) и ГФО-1336mzz(Z) являются негорючими веществами; оказывают незначительное воздействие на климат и обладают повышенной энергоэффективностью; обладают лучшими теплоизолирующими свойствами при использовании для производства и напыления жесткого пенополиуретана, чем ГФУ с высоким потенциалом глобального потепления, и их применение не потребует, возможно, модификации существующего пенообразующего оборудования. Установлено, что ГФО-1233zd(E) коммерчески доступен, и в конце 2014 года было начато производство ГФО-1336mzz(Z) в экспериментальном масштабе, его полная коммерциализация ожидается в 2016 году. Тремя основными препятствиями, мешающими внедрению данных веществ, являются их высокая удельная стоимость, ограниченная доступность в странах, действующих в рамках статьи 5, и отсутствие опыта использования данной технологии в условиях, сложившихся в странах, действующих в рамках статьи 5. #### Задействованные системные предприятия - 8. Из 13-ти системных предприятий и поставщиков полиолов в Таиланде в данном проекте будут задействованы следующие два предприятия: - а) Bangkok Integrated Trading Co., Ltd (BIT): поставляет полиолы (используя главным образом ГХФУ-141b) клиентам, использующим пенополиуретан в разных целях, включая напыляемые пеноматериалы. На предприятии ВІТ существует лаборатория, которая проводит химические испытания (испытания на реакционную способность и флокуляцию/взаимодействие и содержание воды в пене), а физические испытания передаются на внешний подряд. Предприятию ВІТ было оказано содействие на этапе І ПОДПО; и - b) South City Polychem Co., Ltd. (SCP): поставляет полиолы (используя главным образом ГХФУ-141b) клиентам, использующим пенополиуретан в разных целях, включая напыляемые пеноматериалы. На предприятии SCP имеются резервуарысмесители и лаборатория для проведения основных испытаний (т.е. время флокуляции и время отлипа). #### Осуществление проекта 9. Предприятие ВІТ разработает напыляемые пеноматериалы высокой плотности (50 кг/м^3
), а предприятие SCP разработает напыляемые пеноматериалы нормальной плотности (35 кг/м^3). Каждое системное предприятие подготовит и испытает по крайней мере 150 составов на основе $\Gamma\Phi\text{O}$ -1233zd(E) и $\Gamma\Phi\text{O}$ -1336mzz(Z); пять соотношений $\Gamma\Phi\text{V}$ -245fa и $\Gamma\Phi\text{O}$ (100:0, 75:25, 50:50, 25:75 и 0:100); пять циклов на основе различных соотношений полиэфира, полиэстера и аминополиолов; и проведет пять идентичных испытаний каждого состава. Полученные в результате составы будут применяться с использованием дозатора типа Gusmer (Graco), позволяющего регулировать соотношение объемов изоцианата/полиола. Результаты начального этапа будут проанализированы для выявления наилучших комбинаций полиолов. - 10. На втором этапе будут испытаны 30 оптимальных пенообразующих составов (по три образца каждого состава). Затем важнейшие свойства пены (т.е. размерная стабильность, адгезия к любым поверхностям, теплопроводность и технологичность) будут определены и сопоставлены со свойствами типичной смеси ГХФУ-141b. После чего будет проведено эксплуатационное испытание отобранных составов. - 11. Учитывая, что новые смеси со сниженным соотношением ингредиентов будут больше походить на вискозу, чем на смесь ГХФУ-141b, каждому системному предприятию будет предоставлена пенонапылительная установка с максимальным рабочим давлением 3500 фунтов на квадратный дюйм и регулятором соотношения полиола/изоцианата для проведения точного испытания. В комплект будет включено также другое лабораторное оборудование. - 12. Результаты будут распространены на организованном для этой цели техническом семинаре. Системным предприятиям и поставщикам полиола будет обеспечен доступ к экспертам и поставщикам технологии для передачи знаний и усиления технических возможностей разработки составов. - 13. Продолжительность проекта составит, как ожидается, 12 месяцев. #### Стоимость проекта 14. Сметные расходы по проекту составляют 397 100 долл. США и подробно представлены в таблице 1. Таблица 1. Стоимость проекта в разбивке по мероприятиям | Статьи | Кол-во | Цена за
единицу (в
долл. США) | Итого (в долл.
США) | |--|---------------------|-------------------------------------|------------------------| | Оборудование для производства пеноматериалов: | | | | | Установка для напыления пены (рабочее давление 3500 | 2 | 40 000 | 80 000 | | фунтов на квадратный дюйм и регулируемое соотношение | комплек | | | | полиола/изоцианата) | та | | | | Лабораторное оборудование: | | | | | | 2 | 5 000 | 10 000 | | Измеритель теплопроводности | комплек | | | | | та | | | | Разработка и испытание смесей: | | | | | Разработка смесей | 2 | 50 000 | 100 000 | | Стороннее испытание, проводимое аккредитованной лабораторией (воспламеняемость, сжимаемость) | 200 | 250 | 50 000 | | Полевое испытание | | 500 | 10 000 | | Пенополиуретан для испытаний (включая транспортировку) | | | | | Полиол | 3,0 долл.
США/кг | 2000 | 6000 | | Метилендифенилдиизоцианат | | 2000 | 5000 | | Оказание технической помощи | | | | | Технологическая помощь, включая командировки | 1 | 80 000 | 80 000 | | Семинар для распространения технологии | 2 | 10 000 | 20 000 | | Промежуточный итог | | | 361 000 | | Непредвиденные расходы (10%) | | | 36 100 | | Итого | | | 397 100 | #### ЗАМЕЧАНИЯ И РЕКОМЕНДАЦИИ СЕКРЕТАРИАТА #### ЗАМЕЧАНИЯ - 15. Секретариат отметил усилия Всемирного банка по рационализации стоимости проекта, которая была сокращена с первоначальной суммы в 1 046 000 долл. США до 397 100 долл. США в предложении, представленном на 74-м совещании. - 16. По просьбе секретариата Всемирный банк прояснил, что для завершения проекта в течение 12 месяцев ему необходимо сотрудничать с двумя системными предприятиями, одно из которых сосредоточит внимание на теплоизоляции крыш напылением пенополиуретана, а второе на холодильных камерах и зданиях. В случае привлечения только одного системного предприятия необходимо было бы разрабатывать и испытывать двойное число смесей, что заняло бы значительно больше времени. - 17. Объясняя причину включения $\Gamma \Phi V$ -245fa в демонстрационный проект, Всемирный банк пояснил, что для демонстрации используются смеси со сниженным соотношением $\Gamma \Phi V/\Gamma \Phi O$, необходимые в качестве переходного состава, но поставки $\Gamma \Phi O$ ограничены, а цены на них высокие. В целях минимизация использования $\Gamma \Phi V$ Всемирный банк предложил оставить только одну смесь $\Gamma \Phi V$ на тот случай, если $\Gamma \Phi O$ будут недоступны на рынке. Такой альтернативный подход позволит сократить число смесей, подлежащих испытанию, со 150 до 110, и пересмотренная стоимость составит 355 905 долл. США. - 18. По просьбе секретариата Всемирный банк подтвердил, что конверсия оборудования конечных потребителей будет проведена в рамках этапа II ПОДПО. Вместе с тем Всемирный банк обязался обеспечить за счет реализации данного проекта поэтапное устранение 35,6 мт ГХФУ-141b (при рентабельности в 10 долл. США/кг). - 19. Был сделан вывод о том, что в данном случае не происходит частичного наложения этого проекта с фондами, уже утвержденными для предприятия ВІТ в рамках этапа І, так как данные фонды предназначались для оказания технической помощи микропредприятиям в переходе на технологии использования воды в качестве вспенивателя во всех подсекторах, за исключением подсектора напыляемых пеноматериалов. - 20. Как было указано Всемирным банком, в Таиланде существуют огромные возможности воспроизводимости при использовании отобранной технологии, учитывая, что предприятия подсектора напыляемых пеноматериалов потребляют 585 мт ГХФУ-141b; аналогичная ситуация существует и в других странах региона: Китай (7 100 мт), Индонезия (5,5 мт) и Вьетнам (60 мт). Хотя Филиппины прекратят использование ГХФУ-141b для производства напыляемых пеноматериалов в 2015 году, страна может также извлечь пользу из этого проекта. - 21. В плане потенциальных рисков, связанных с внедрением технологии, Всемирный банк указал, что новые составы могут оказаться более вязкими и тогда потребуется новое оборудование для распыления пены. В таком случае в рамках этапа II ПОДПО необходимо будет рассмотреть вопрос об инвестиционном компоненте для поставок предприятиям, имеющим на это право, нового оборудования для распыления пены. Второй риск связан со стоимостью и коммерческой доступностью ГФО, и в данный момент по этому поводу нельзя сказать ничего определенного. Данный риск несколько смягчает предложение провести аналогичную серию испытаний в случае, если придется, возможно, использовать ГФУ в качестве переходного вспенивающего материала в короткий промежуток времени, пока в странах, действующих в рамках статьи 5, не будут организованы поставки ГФО в промышленных масштабах. - 22. Всемирный банк проинформировал секретариат о том, что для ускорения реализации проекта его можно было бы включить в существующее соглашение о субсидировании для этапа I ПОДПО. - 23. Аргументируя запрошенные расходы, и в частности по статье "технологическая помощь, включая командировки", Всемирный банк пояснил, что осуществление проекта требует интенсивной разработки смесей, так как ГФО будет впервые проходить оценку в условиях стран, действующих в рамках статьи 5. В этой связи необходимо, чтобы международный эксперт по пеноматериалам сотрудничал с обоими системными предприятиями в ходе всего процесса. - 24. Исполнительный комитет, возможно, пожелает изучить вопрос об утверждении данного проекта с учетом руководящих указаний и других проектов, рассматриваемых в рамках статьи финансирования в 10 млн долл. США, выделенной на эти цели. #### РЕКОМЕНДАЦИЯ - 25. Исполнительный комитет, возможно, пожелает изучить: - a) демонстрационный на проект системных предприятиях ПО выпуску пеноматериалов в Таиланде, реализуемый с целью разработки готовой смеси полиола для нанесения пенополиуретана напылением с использованием вспенивателя с низким потенциалом глобального потепления (ПГП) в контексте своего обсуждения предложений по демонстрационным проектам альтернатив ГХФУ с низким потенциалом глобального потепления, приведенных в документе выявленных обзоре вопросов, общем в ходе анализа проектов (UNEP/OzL.Pro/ExCom/75/27); - вопрос об утверждении проекта на системных предприятиях по выпуску пеноматериалов в Таиланде, реализуемый с целью разработки готовой смеси полиола для нанесения пенополиуретана напылением с использованием вспенивателя с низким ПГП в объеме 355 905 долл. США плюс эксплуатационные расходы учреждений в 24 913 долл. США для Всемирного банка в соответствии с решением 72/40; и - с) вопрос о вычитании 3,91 тонн ОРС ГХФУ из объема начального уровня, установленного для совокупных сокращений потребления ГХФУ. #### Annex I # THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER PROJECT COVER SHEET | COUNTRY: | Thailand | | | |--------------------------|--|-------------|--| | PROJECT TITLE: | Demonstration project at foam system houses in Thailand to formulate pre-blended polyol for spray polyurethane foam applications using low-GWP blowing agent | | | | SECTOR COVERED: | PU Foam | | | | ODS USE IN SECTOR: | 349 MT HCFC-141b in 2010 (spray foam) | | | | PROJECT IMPACT: | N/A | | | | PROJECT DURATION: | One year | | | | TOTAL PROJECT COST: | Incremental Capital Costs
(Incl. 10% contingencies) | 397,100 USD | | | | Incremental Operating Costs 0 U | | | | | Total Project Cost | 397,100 USD | | | PROPOSED MLF GRANT: | | 397,100 USD | | | SUPPORT COST: | | 27,797 USD | | | TOTAL COST: | | 424,897 USD | | | COST-EFFECTIVENESS: | N/A | | | | IMPLEMENTING ENTERPRISE: | Bangkok Integrated Trading Co., Ltd | | | | | 2. South City Polychem Co., Ltd | | | | IMPLEMENTING AGENCY: | The World Bank | | | | COORDINATING AGENCY: | Department of
Industrial Works, Ministry of Indust | ry | | | | Federation of Thailand Industries | | | | PROJECT SLIMMARY | | | | #### PROJECT SUMMARY This is a demonstration project to validate the use of two Hydrofluoroolefins (HFOs): HFO-1233zd(E) and HFO-1336mzz(Z) for spray foam applications in Thailand. These are low GWP and non-flammable blowing agent being developed to replace HCFC and HFC blowing agents. The project consists two main components. The first component is the formulation development with participating system houses. Two local system houses are participating under this component, one to develop formulations at 35kg/m^3 density and another at 50kg/m^3 density in order to cover most spray foam applications in Thailand. The second component is technical replication and dissemination of results. The development process consists the following steps: planning, experimental laboratory, formulation development, foam samples preparation and testing. An international expert will be engaged to provide support during the planning and implantation of the project, analyze cost/performance, and participate in technical dissemination seminar. | Prepared by: | | |--------------|------| | Reviewed by: | OORG | #### 1. PROJECT OBJECTIVE The Article 5 parties will address in the short term the second phase of the HPMP (2016-2020) in the foam sector. One of the most critical subsectors that still uses HCFC-141b and accounts for a significant market portion is the production of spray foam for different applications such as construction, refrigerated transportation, tanks insulation, etc. The sector is characterized by a great number of "micro" small enterprises without the sufficient knowledge and discipline to handle flammable substances, which prevents the adoption of hydrocarbons as HCFC replacement. In addition the introduction of high GWP alternatives such as HFCs (HFC-245fa, HFC-365mfc, etc.) would result in a negative climate impact. This projects proposes the validation of the Hydrofluoro Olefins (HFOs), a low GWP and non flammable option, for spray foam applications in the scenario of the Article 5 parties through the development of polyurethane (PU) formulations with reduced HFO contents that have CO2, derived from the water-isocyanate reaction, as co-blowing gas. The aim is to optimize the cost/performance balance while achieving a similar foam thermal performance to HCFC-141b based formulations. Therefore the objectives of the project would be: - 1. To strengthen capacity of selected local system houses to formulate, test, and produce pre-blended polyol using low-GWP alternatives. This would lead to increased supply of cost-effective low-GWP pre-blended polyol to small and micro-enterprises. - 2. The validation of the use as foam blowing agents of the recently developed HFOs in blends with CO2 for the production of spray foam in Thailand. The aim is to optimize the HFC/HFO ratio in the cell gas to get a similar thermal performance to HCFC-141b at a minimum incremental operating cost. - 3. To make a cost analysis of the different HFC/HFO reduced formulations versus the currently used HCFC-141b based system. - 4. To disseminate the technology to interested system houses in Thailand and other countries. #### 2. SECTOR BACKGROUND Based on HPMP, the foam sector in Thailand is the largest manufacturing sector of Thai-owned enterprises with a 2010 consumption of HCFC-141b of 1,723 metric tonnes, most of it in the form of domestically blended polyol. There are 215 foam manufacturing enterprises active in manufacturing PU rigid foam, integral skin, flexible foam and extruded polystyrene. The majority uses pre-blended polyol that is supplied by the different polyol suppliers. Out of the 215 enterprises, 53 have a consumption of less than 1 ODP MT of HCFC-141b and can consequently be considered as "micro-enterprises." Table 1: Breakdown of HCFC Consumption in Foam Sector (MT)¹ | Section/Application | No. of
Enterprises | HCFC-141b Consumption (MT) | | | | |--|-----------------------|----------------------------|-------|-------|-------| | Sector/Application | | 2007 | 2008 | 2009 | 2010 | | Rigid Polyurethane | | | | | | | Box Foam | 4 | 44.7 | 61.4 | 70.2 | 60.1 | | Commercial Refrigeration | 14 | 110.4 | 136.6 | 132.8 | 147.5 | | Steel/Fiberglass door | 6 | 29.0 | 32.6 | 32.5 | 28.5 | | Ice Box | 44 | 592.3 | 604.4 | 634.1 | 602.8 | | Pipe Section/Pipe-in-pipe Insulation | 6 | 41.3 | 39.3 | 50.4 | 62.7 | | Pipe Section and Sandwich Panel*** | 3 | 32.8 | 38.3 | 40.6 | 38.4 | | Refrigerated Truck, Reefer, Fishery vessel | 13 | 43.2 | 59.3 | 59.7 | 70.3 | | Sandwich Panel | 25 | 242.7 | 275.4 | 246.9 | 332.2 | | Spray Foam | 30 | 295.9 | 330.1 | 298.6 | 349.1 | ¹ Source: Thailand HCFC Phase-out Management Plan - | Sector/Application | No. of | HCFC-141b Consumption (MT) | | | | | | | |-----------------------------------|-------------|----------------------------|---------|---------|---------|--|--|--| | | Enterprises | 2007 | 2008 | 2009 | 2010 | | | | | Thermoware | 7 | 46.6 | 54.5 | 47.9 | 45.7 | | | | | Wood Imitation | 6 | 27.6 | 32.2 | 39.2 | 49.0 | | | | | Others | 44 | 41.8 | 58.4 | 66.2 | 48.0 | | | | | Sub-total Rigid Polyurethane Foam | 202 | 1,548.2 | 1,722.6 | 1,719.1 | 1,834.4 | | | | | Flexible Polyurethane | 5 | 21.6 | 25.0 | 27.9 | 25.1 | | | | | Integral Skin | 8 | 19.3 | 28.0 | 24.3 | 24.1 | | | | | Total Foam Sector | 215 | 1,589.1 | 1,775.6 | 1,771.3 | 1,883.6 | | | | Under Stage I HPMP, the foam sector conversion will phase-out a total quantity of 1,517 MT of HCFC-141b used in bulk, in domestically pre-blended and imported pre-blended polyol. Of which, 639.6 MT of HCFC-141b will be replaced by cyclo-pentane and 844.6 MT of HCFC-141b will be replaced by a 50% reduced formulation with HFC-245fa as a blowing agent. The balance will be phased out by water blown technology. Thailand Stage I HPMP does not include spray foam application in 30 enterprises which consumed 349.1 MT of HCFC-141b in 2010. The reason for not including spray foam in Stage I was due to limited alternatives for spray foam either because of the capacity of enterprises needed to adequately apply the technology and the technology's maturity (CO2), or because of the environmental impact of other commercially available alternatives (HFCs). #### 2.1 System House Background Thailand's foam industry comprises not only polyol suppliers and manufacturers, but also system houses that both supply pure polyol to, as well as blend polyol and prepare formulations for the foam industry. In addition to direct supply by system houses, local polyol distributors authorized by the system houses also supply pure polyol and pre-blended polyol to foam enterprises across the country. Thailand has thirteen PU system houses and polyol suppliers. The local system houses/suppliers cater to small/micro enterprises (SME) with PU material, while international PU chemical manufacturers (BASF, Bayer, Dow and Huntsman) are represented and concentrate on the larger users. To reach these small and micro-sized enterprises, the project will provide foaming equipment to two local system houses and assist in developing and supplying pre-blended polyol using low-GWP alternatives to spray PU foam to their customers. The two participating local system houses are: #### 2.1.1 Bangkok Integrated Trading Co., Ltd Bangkok Integrated Trading (BIT) was established in 1989. It began as the sole distributor of PU foam of Dow Chemical in Thailand. They began to provide their own pre-blended polyol in 2009. Its products are widely used in the production of foam for appliances, sandwich panels, automotive, furniture, reefer container, cold store, pipe insulation, imitation wood and imitation ceramic, spray foam, etc. It is supplying polyols to customers all over the Thailand. The estimated HCFC-141b in system sales and spray foam from 2010 to 2015 are shown in Annex 1. Most of the products are pre-blended polyol with HCFC-141b blowing agents. BIT facility includes a laboratory that performs chemical tests: reaction and cream/string tests, and foam water content (water titration). Physical tests are performed by external accredited laboratory either in Thailand and Singapore according to . The company has a 5-MT insulated blending tank to produce preblended polyol. BIT technical personnel consist a chemist with more than 17-year experiences in foam formulation and production. #### 2.1.2 South City Polychem Co., Ltd South City Polychem (SCP) was founded in 1996, located in Rayong Province. SCP is the sub-company under South City Group. There are 3 people are working on polyol system development and production. Head of R&D has more than 20-year experience in PU foam development. Its products are widely used in the production of foam for appliances, sandwich panels, automotive, furniture, reefer container, cold store, pipe insulation, imitation wood and imitation ceramic, etc. It is supplying polyols to customers all over the Thailand. Most of the products are pre-blended polyol with HCFC-141b blowing agents. #### 2.2 Spray Polyurethane foam (SPF) Spray PU foams are closed-celled, air tight, resistant to mildew and fungal attack, provide no food value to rodents and have good vapor barrier properties. They find utility as an in situ applied insulation in applications where irregular shapes or the need for a monolithic layer of foam exists. These applications include building envelope, pipe insulation, tank insulation, rail cars, residential roofing and floors. Sprayed foam is now finding increasing applications in retrofitting/refurbishing roofs, walls, floors and windows of existing buildings as well as in new constructions such us commercial offices, industrial factories and warehouses, agricultural pig and chicken farms. There are approximately 30 enterprises that provide spray foam services to their customers in Thailand. Main
applications for spray foam in Thailand include the followings: roof, cold-storage room (including floor), fishing boat, passenger bus, storage tank, and insulated tanker. These enterprises either buy blowing agent and mixing it themselves with pre-blended polyol systems or purchase pre-blended polyol systems with HCFC-141b. Their baseline HCFC-141b consumption in 2010 was estimated to be 349.1 MT and increasing to 585 MT in 2013. For normal applications, desired density is 35kg/m³ for optimal insulation. For flooring applications that need high compressive strength, the desired density is 50 kg/m³. Current SPF formulation in Thailand uses 20-30% HCFC-141b in pre-blended polyol. The system house can adjust the ratio of HCFC-141b in pre-blended polyol depending on the density requirement of the users. Foam systems used in SPF applications need to have fast reaction time (cream time: 3 sec. and tack-free time: 5-7 sec.). Other considerations include low odor. For developed countries, the proven technical options to replace HCFC-141b as blowing agent for spray PU foam are exclusively limited to high GWP HFCs, specifically, HFC-245fa, which has a GWP of 1,030 (100yr ITH, IPCC 4th Assessment Report 2008). This constitutes a major drawback for developing countries, as this is an application with comparatively high emissions and having in mind Decision XIX/6, which promotes selection of alternatives that minimize environmental impacts, in particular impacts on climate. Reduced HFC-245fa formulation at 7.5-10% could reduce the climate impact but will increase the viscosity of the pre-blended polyol. This could pose problem for current crop of spray foam machines, with maximum working pressure up to 1600 psi, whether they can cope with higher viscosity polyol. The barrier for hydrocarbon technology in this application is safety during foaming because of their flammability. #### 2.3 Low-GWP alternatives The unsaturated HFCs and HCFCs (commonly called HFOs), 1233zd(E) and 1336mzz(Z), marketed under the trademarks Forane (Arkema), Formacel (Chemours) and Solstice (Honeywell) and recently commercialized, have shown in rigid PU foam applications such as domestic refrigeration and spray a better thermal performance that the high GWP-saturated HFCs currently used in the developed countries. Their general properties are shown in **Table 2** along with HCFC-141b, HFC245fa and HFC-365mfc. They offer a unique opportunity for introducing safe non-flammable technologies that while enhancing energy efficiency will have a positive effect on climate change in terms of greenhouse emissions. Based on the physical properties of these substances (non-flammability and relatively high boiling points) it is anticipated that their application does not require the retrofit of the foaming equipment currently in use. This is particularly true and important at the level of small and medium enterprises. Commercial availability has already been established for HFO-1233zd(E). Pilot scale production of HFO-1336mzz(Z) commenced in late 2014, with full commercialization expected in 2016. Although for these options availability is likely to be targeted mostly in markets within Article 2 parties where the requirement for improved thermal efficiency is best identified, the demand to leapfrog high GWP alternatives to HCFCs could accelerate distribution to Article 5 regions. There are not legal or commercial barriers for the introduction of these products. Table 2: HCFC, HFC and HFO Foam Blowing Agent Properties | Common name | HCFC-141b | HFC 245fa | HFC 365mfc | HFC1336mzz-Z | HCFC 1233zd | HCFC 1233zd | |--|------------------------------------|--|---|--|-----------------------------------|-------------------------------| | Manufacturer | Various | Honeywell | Solvay | DuPont | Honeywell | Arkema | | Trade name | | Enovate [®] | Solkane® | Formacel [®] | Solstice [™] LBA | Forane [®] | | Formula | CH ₃ CCl ₂ F | CF ₃ CH ₂ CHF ₂ | CF ₃ CH ₂ CF ₂ CH ₃ | Cis-CF ₃ -CH=CH-
CF ₃ | Trans-CICH=CH-
CF ₃ | Trans-ClCH=CH-CF ₃ | | Molecular Weight | 116.9 | 134 | 148 | 164 | 164 130.5 | | | Boiling Point (°C) | 32.1 | 15.3 | 40.2 | 33 | 19 | 19 | | GWP (100yr ITH)* | 725 | 1,030 | 794* | 2 | 1 | <7 | | Gas Thermal
Conductivity (mW/mK,
10°C) | 9 | 12.5 | 10.6 | 10.7 | 10.6** | 9 | | LFL / UFL
(vol % in air) | 6.5-15.5 | None | 3.8-13.3 | None | None | None | The formulation science associated to the PU technology and the excellent foam thermal characteristics provided by HFOs open the door for the development of PU formulations with reduced HFO contents that have CO₂, derived from the water-isocyanate reaction, as co-blowing agent. The aim is to optimize the cost/performance balance of these substances, achieving a similar foam thermal behavior to HCFC-141b at the lowest possible cost, and, simultaneously, to carry out a comprehensive assessment of the HFO performance at developing countries conditions. These alternatives could provide a long-term solution for spray PU foam applications as well as for other application. However, there are two main obstacles for the introduction of these substances: - 1. Their high unitary cost that is reflected in the final cost of the PU formulation. - 2. The minimum experience with these products in developing country conditions. This technology has not been demonstrated in conditions prevailing in Article 5 parties. #### 3. PROJECT DESCRIPTION The project consists of two main components. The first component is the reduced formulation development with participating system houses. The second component is technical replication and dissemination of results. #### 3.1 Reduced Formulation Development with System House Two local foam system houses (Bangkok Integrated Trading Co. Ltd. and South City Co. Ltd.) will be participating in the project. Bangkok Integrated Trading will focus their formulation on high density SPF (50kg/m³) while South City will focus on normal density SPF (35kg/m³). Based on their past experience in formulation development, the development process will be as followed: # i. Planning. Definition of the independent variables: type of HFO, type of polyols, proportion of HFOs in the cell gas, and density. Definition of the dependent variables: Lambda value, compression strength, flame retardant, and dimensional stability. A commercial HCFC-141b based formulation will be used as control. #### ii. Selection of polyol candidates based on solubility. SPF uses a combination of polyether, polyester and amine polyols based on different requirements: dimension stability, flame retardant, and cell size. At this stage, candidates from each type of polyol will be shortlisted based on their solubility with the two HFOs. #### iii. Test options. Different spray foam applications require different combinations of polyol, surfactant, catalysts, fire retardant and other additives. With technical support from the international expert, one foam system house will develop formulations for under-roof application while another will develop formulations for cold storage room. Based on chosen independent variables, each system house will prepare and test a minimum of 150 formulations. - 2 abovementioned HFO molecules; HFO-1233zd(E) and HFO-1336mzz(Z) - 5 HFC-245fa and HFO ratios 100:0, 75:25, 50:50, 25:75, and 0:100. At this stage, HFC-245fa is included as transitional to control cost while price and availability of HFOs are uncertain at the moment. - 5 cycles based on different ratios of polyether, polyester and amine polyols - 3 identical tests on each formulation Currently, pre-blend polyol for SPF applications in Thailand contain 20-30% of HCFC-141b while the best reduced formulation used in developed countries can reach 7.5% of HFC-245fa. In this demonstration project, the goal is to validate reduced formulations at 10% HFC/HFOs. #### iv. Formulation development. The resulting formulations will be prepared at laboratory scale and then applied using a Gusmer (Graco) type dispenser with an adjustable isocyanate/polyol volume ratio. The initial phase will be at laboratory scale testing minimum of 150 formulations Catalysis and overall blowing agent amount will be adjusted to have among formulations a similar reactivity, free-rise density, and dimension stability. The results of initial phase will be analyzed in order to identify best combinations of polyols before the next phase. The second phase will use a Gusmer (Graco) type dispenser to spray 30 foam formulation and 3 samples from each formulation will be tested. Spray foam must meet a number of customer, government and specifier's criteria. The baseline for critical properties such as dimensional stability, adhesion to different substrates, thermal conductivity, processability will be determined to compare the values currently observed with the HCFC-141b based systems. The foams will be tested for reactivity, foam surface quality, density with and without skins, closed cell content, thermal performance, compressive strength, dimensional stability and on selected samples for flammability via standard test methods. The critical immediate and aged foam properties for these applications (Lambda value, compression strength, dimensional stability) will be tested following ASTM or ISO standard procedures and DIN for flammability. Given that the new reduced formulations will most likely be more viscose than HCFC-141b formulation, the project will provide a spray foam machine with maximum working pressure at 3,500 psi and adjustable polyol to isocyanate ratio to each system house in order to carry out the spray foam test accurately. Other equipment will include additional laboratory equipment. The participating system houses will receive budget for testing different formulations
and for cost of raw materials for the trial production and testing that they will develop with their customers. #### v. Analysis of results. A detailed analysis of the resulting foam properties at different HFO levels and the associated formulation cost will be carried out. A typical HCFC-141b formulation will be used as standard. #### vi. Field test A field test with selected formulations will be done. #### 3.2 Technical Replication and Dissemination of Results Based on results from the first component, technical workshop will be made available to all system houses and polyol suppliers to share the results from the testing of foam formulations using low-GWP alternatives. Foam system houses and polyol suppliers will be given support in the form of access to experts and suppliers of alternative technologies to bring them up to speed on short and longer term options for a sector characterized by small users with capacity limitations. The technical assistance will transfer knowledge and strengthen technical capacity of the system house in formulation development. Foam properties depend on the interaction of all components: polyols, blowing agents, surfactants, catalysts, and isocyanate. #### 3.3 IMPACT ON GWP There is no impact on GWP at this stage. The impact will occur when the system houses produce and commercialize the new low-GWP formulations. #### 4. PROJECT BUDGET #### 4.1 Technical Assistance Cost for international expert is included. The expert is expected to provide technical advices for preparation, monitoring and reviewing of project, and recommendation on extension to other foam industry in the country. Three full one-week visits are needed. The first visit is to carry out detailed planning of the project implementation (experimental laboratory planning, formulation development, foam samples preparation and testing). The second visit is planned during the middle of the implementation to do a detailed project follow-up. Finally the third visit is to discuss the final report preparation including support on the cost/performance analysis and, in parallel, participate in the dissemination seminar. #### 4.2 Provision of equipment The project plans to provide one full set spray foam machine (maximum working pressure 3,500 psi. The equipment consists of ordinary spray foam dispenser, super-critical CO2 module as well as water introduction module for PIR application. By this arrangement, any of potential difficulty to connect all modules can be avoided, so that fast implementation is ensured. #### 4.3 Laboratory tests Some of essential properties of the foam are to be done by outsourcing (Flame retardancy and aging tests, SEM). Fundamental laboratory equipment for testing such as a thermal conductivity tester and are provided to the participating system houses. For the foam application, minimum amount of formulated polyol is to be provided from suppliers both for PUR and PIR applications. #### 4.4 Dissemination workshop Cost to organize the dissemination workshops is included. Two workshops will be organized in Thailand to system houses in Thailand and support to interested system houses from countries in the region. #### 4.5 Incremental operating cost According to the supplier, the cost of the low-GWP foam blowing agent material will be much higher than HCFC-141b. Though with reduced HFO PU formulation that have CO₂, derived from the water-isocyanate reaction, as co-blowing agent, the cost/performance balance of these substances, achieving a similar foam thermal behavior, could be slightly higher than HCFC-141b. Amount of PU material is nearly same as the HCFC-141b foams for almost all application, since the density is same and required thickness is same. However, IOC is not requested for end users in the present demonstration project. The summary of the project cost is as follows: | ITEMS | Qty. | Unit Cost
(US\$) | Total (US\$) | Remark | |--|----------|---------------------|--------------|--------| | Foaming equipment | | | | | | Spray foam machine (maximum
working pressure at 3,500 psi &
adjustable polyol/isocyanate
ratio) | 2 sets | 40,000 | 80,000 | | | Laboratory equipment | | | | | | Thermal conductivity tester | 2 sets | 5,000 | 10,000 | | | Formulation development and testing | | | | | | Formulation development | 2 | 50,000 | 100,000 | | | External test by accredited laboratory (flammability, compressibility) | 200 | 250 | 50,000 | | | Field Test | 20 | 500 | 10,000 | | | PU material for testing (including transportation) | | | | | | Polyol | \$3.0/kg | 2,000 | 6,000 | | | • MDI | \$2.5/kg | 2,000 | 5,000 | | | Technology assistance including travel | 1 | 80,000 | 80,000 | | | Technology dissemination workshop | 2 | 10,000 | 20,000 | | | Sub-total | | | 361,000 | | | Contingencies (10%) | | | 36,100 | | | Total | | | 397,100 | | # 5. PROPOSED MULTILATERAL FUND GRANT The proposed grant request is US\$ 386,100, the calculated cost based on actual situation of all participants. # 6. PROJECT IMPLEMENTATION The project will be implemented under the supervision of the Department of Industrial Woks in coordination with Federation of Thai Industries. The following proposed schedule will be effective after the proposed MLF grant approved: | Activity | Month after approval | | | | | | | | | | | | |--|----------------------|---|---|---|---|---|---|---|---|----|----|----| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | Project approval | X | | | | | | | | | | | | | GSB appraisal | X | | | | | | | | | | | | | Sub-project agreement | | X | | | | | | | | | | | | Planning for system development and verification | | | X | | | | | | | | | | | Activity | Month after approval | | | | | | | | | | | | |--|----------------------|---|---|---|---|---|---|---|---|----|----|----| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | testing | | | | | | | | | | | | | | Specification of foaming equipment and site preparation | | | X | | | | | | | | | | | Procurement and installation of equipment at the system houses | | | | X | | | | | | | | | | Trials/testing/analysis | | | | X | X | X | X | X | X | | | | | Report and Review meeting. | | | | | | | | | X | X | | | | Technology dissemination workshop | | | | | | | | | | | X | | | Completion report | | | | | | | | | | | | X | # 7. PROJECT IMPACT Not applicable. # 8. ANNEXES ANNEX-1: Information on system house consumption ANNEX-2: OORG Review # **Annex 1: HCFC-141b Consumption Summary** # A. Bangkok Integrated Trading System Sales and HCFC-141b consumption | YEAR | 2011 | 2012 | 2013 | 2014 | 2015
(forecast) | |------------------------------------|------|------|------|------|--------------------| | HCFC-141b Consumption (Total) | 250 | 274 | 271 | 204 | 276 | | HCFC-141b Consumption (spray foam) | 19.2 | 12.9 | 8.0 | 7.6 | 30 | # B. South City System Sales and HCFC-141b consumption (MT) | YEAR | 2011 | 2012 | 2013 | 2014 | 2015 (forecast) | |------------------------------------|------|------|------|------|-----------------| | HCFC-141b Consumption (Total) | 129 | 120 | 140 | 150 | 180 | | HCFC-141b Consumption (spray foam) | 26 | 24 | 28 | 30 | 36 | #### THAILAND – REVIEW OF SPRAY FOAM DEMONSTRATION PROJECT #### **INTRODUCTION** This project involves the validation of low GWP unsaturated HFCs (hereinafter referred to as "HFOs") as replacements for HCFC-141b in polyurethane rigid foam in the spray foam sub-sector. In particular, it involves the development of polyol formulations based on HFOs, in conjunction with two local system houses, which supply local SMEs and micro enterprises who are engaged in the application of spray foam systems in the Thailand market. #### TECHNICAL ASSESSMENT The replacement of HCFC-141b in the spray foam sub-sector has been particularly challenging. The main HCFC replacement technology for the global rigid polyurethane foam industry have been hydrocarbons (pentanes). These offer cost-effective low GWP solutions but the high flammability of these hydrocarbons (HCs) prohibit the use in spray foams on safety grounds. Further, the safety engineering modifications would be prohibitive for SMEs and the necessary safety management capacity would be beyond the resources of SMEs. In developed countries the main replacements for HCFC-141b for spray foams have been one of the two saturated HFCs HFC-245fa or HFC-365mfc (note that HFC-365mfc is not mentioned in Section 2.2 where the use of HFCs is discussed – please rectify). These two HFCs offer excellent foam properties but their high GWPs indicate that they may not be long term solutions, particularly where compliance with Decision XIX/6 is required or is desirable. In addition, these HFCs do not, in themselves, offer cost effective solutions in comparison with HCFC141b and "reduced HFC" formulations involving co-blowing with CO2(water) is one approach to cost effectiveness being applied in developing countries. The comparatively recent development of HFOs offer low GWP, non-flammable, alternatives to HFCs. These are HFC136mzz-Z (DuPont) and HCFC1233zd (Honeywell and/or Arkema). Their evaluation in developed countries and in applications such as appliances in developing countries are subject to intensive activity but the evaluation in SME-related applications such as spray foam is not being followed in the same time scale. However, their early evaluation in these applications indicates a significant improvement in insulation properties in comparison with the HFCs. It should be noted that the commercial availability of these new blowing agents is improving as new production facilities are built and commissioned. The proposed project addresses the evaluation of these HFOs in a comprehensive manner. A key step is the partnership with two local systems houses in the
development of suitable formulations for spray foams. These system houses are very experienced in polyurethane rigid foam technology. A further key step is the development of "reduced" formulation using HFOs in conjunction with partial co-blowing with CO2(water). This is covered in Section 1 (Project Objective) but is not further covered in Section 3.11 (iii) which concentrates on blend rations with HFC-245fa. It should be made clear to the reader that "reduced" formulations are used. The development and evaluation of formulations involves a range of polyol types and this approach is fully supported. The formulations will be designed to give foam densities at two levels. These will be at ca 35 kg/m3 and ca 50 kg/m3 to cover optimum insulation and walls and floor/roof applications, respectively. Another key step is involvement and the enhancement of the capabilities of the two system houses. This step includes a new spray foam dispenser and a thermal conductivity tester for each systems house. The dispensers are chosen to be capable of working with higher viscosity polyol formulations. The reviewer queries the decision to have only one workshop to disseminate the results and learning from the study. Will this be enough to ensure the necessary attendance of SME foam manufacturers from different regions within and outside Thailand? #### ENVIRONMENTAL, HEALTH AND SAFETY CONSIDERATIONS The main environmental consideration is that HFO technology is of low GWP (and extremely low/negligible ODP) and represents a long-term option. The climate/energy impact (benefit) via the project results is low but may not be negligible, depending on whether or not improved insulation values are achieved in comparison to HCFC-141b. However, long term use of HFCs, even in blends, would have a negative impact There are no health considerations due to the project per se but the opportunity should be taken during the technology dissemination workshop to emphasise, particularly to micro/SMEs, the importance of avoiding exposure to MDI vapour. #### PROJECT COSTS The proposed capital cost items are necessary and are supported. In terms of operating costs, these will be higher than for HCFC-141b despite the measures such as the "reduced" HFO approach taken. However, it is noted that incremental operating costs are not requested. The development of a comparative cost analysis will be a challenging target until market prices are known. #### IMPLEMENTATION TIMEFRAME AND MILESTONES The timetables should be feasible and are supported. RECOMMENDATION - Approval (Please note points made\\0 Dr M Jeffs 17/09/2014