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1. The Secretariat identified during the preparation for the 59" meeting of the Executive Committee
an issue related to the cost of conversion of component manufacturing versus incremental operating costs.
Through decision 59/14 the Executive Committee decided to defer the discussion to the 60" meeting and
subsequently, in decision 60/45 to defer to the 61° meeting. At the 61 meeting, the issues raised in the
related document UNEP/OzL.Pro/ExCom/61/51 were discussed and resolved, except for the question of
funding for the conversion of heat exchanger manufacturing.

2. The Executive Committee took decision 61/45(c) requesting the Secretariat to prepare a
document on the level of incremental cost related to retooling for manufacturing of tube-and-fin heat
exchangers to be considered by the Executive Committee at its 62™ meeting. The Secretariat prepared
document UNEP/OzL.Pro/ExCom/62/55 contained in Annex | to the present document. During the
discussion at the Executive Committee, the quality of the document was questioned since it did, in the
opinion of one delegate, not adequately take into account the highly technical issues involved. The
Executive Committee took decision 62/61 to request the Fund Secretariat to prepare a new document on
the incremental cost related to retooling for manufacturing of heat exchangers to assist in the Committee’s
deliberations, incorporating any views it might receive from experts, implementing agencies and members
of the Executive Committee. The Secretariat issued document UNEP/OzL.Pro/ExCom/65/53 in response
to decision 62/61, taking into account the highly technical issues raised. The Executive Committee began
its deliberations on the document but, after initial discussions, agreed to defer consideration of the
incremental costs related to retooling for manufacturing heat exchangers to the 66" meeting.

3. The Secretariat is re-issuing the document prepared for the 65" meeting, enhanced by technical
comments provided by the World Bank on the issue. These comments are presented in Attachment 111 to
this document.

Approach
4. The Secretariat has analyzed the discussion during the 62™ meeting and has undertaken a

transcript of the parts of one intervention of a member of the Executive Committee where it related to
technical issues, providing specifics for an investigation of a number of particular subjects. The
Secretariat had also received a letter from the research and development department of Petra Engineering
Industries Co. in Jordan, a beneficiary of a demonstration project for the conversion of air conditioning
manufacturing to HFC-410A technology, where a decision on funding of heat exchanger conversion is
outstanding. The related information is contained in Attachments | and 11, respectively. The Secretariat
has further had discussions with implementing agencies on the same issue, most notably with UNDP
during the discussions of conversion projects under an HPMP for Indonesia. The Secretariat has analyzed
the related contributions, prepared a list of technical issues to be considered and came to the conclusion
that the related work has to be undertaken by an outside expert. The Secretariat identified a suitable
expert and contracted him to undertake a study. The expert who had retired earlier this year, is a member
of the Refrigeration Technical Options Committee, and had previously been the engineering manager for
chiller development and head of compressor technology and development for a major air conditioning
manufacturing company. The related study is contained as Attachment | to this document.

5. The technical study focuses on the practice in the air conditioning manufacturing industry during
the conversion from HCFC-22 to HFC-410A. Some aspects might be worth noting in this introductory

paper:

€)) The expert points out that the issue of system pressure and necessary increase in the wall
thickness of tubing is related to the potentially high temperatures and related pressure
experienced during transport, i.e. independent of the climate at the site of use of the
product, and at a higher pressure level than experienced in operation;
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(b) Another point made by the expert was that the pressure resistance was in any case
established as a multiple of the highest probable pressure, defined according to the
temperature as described under sub-paragraph (a);

(©) He also points out that in response to the challenges faced with the conversion from
HCFC-22 to HFC-410A, the industry changed the procedure to ensure pressure resistance
from a static approach, which foresaw five times the maximum pressure, to a more
complex dynamic approach, closer to the actual reality, where the test pressures are
limited to three times the highest probable pressure, but the system would have to
withstand first 200,000 cycles of the highest probable pressure being applied and released
again. The expert explained that this process applies significant additional stress on the
equipment and shows a number of weaknesses which were not visible using the static
pressure test, despite the highest pressure in the dynamic test being lower than in the
static test; and

(d) As a result, air conditioning systems in general, and heat exchangers in particular are
designed with at least as good, possibly better characteristics, forcing a number of minor
design changes, but no changes which necessitates a major change in retooling.

6. The consultant further quantified the possible costs which are related to the dynamic testing as
well as the necessary additional tools in order to ensure the sufficient quality of the product. The study
also explains in detail a humber of typical design changes, explanations which are hard-won practical
experiences and which might therefore serve the implementing agencies and the enterprises, when
conversion takes place, as a guide on redesign efforts. The Secretariat believes that the study, directly or
indirectly, covered all of the technical issues raised in discussions in the Executive Committee or with the
Secretariat.

7. Table 1 below shows the estimated incremental cost for heat exchanger conversion.

Table 1: Cost for heat exchanger conversion

Cost for medium Cost for small companies
Cost items companies (US $) (US'$)
Tools 15,000 15,000
Testing equipment 100,000 | Dependent on particular case
Contingency 11,500 | Dependent on particular case
Total (per company) 126,500 >15,000
8. The Secretariat discussed with the consultant the possible conclusions which could be drawn

from the study in terms of support needed for manufacturers in Article 5 countries. It emerged that
conversions to HFC-410A are generally demanding in relation to the engineering to be undertaken, not so
much because of the need to convert the manufacturing but to adopt small design changes to allow for the
different dynamic behaviour of the refrigerant in the cycle; not introducing these changes seems
frequently to cause vibrations, leading to rupturing of joints etc. Since the joints are particularly
numerous in and around the heat exchangers, the dynamic testing ensures the strength of the heat
exchangers as well as the general quality of manufacturing.

9. The consultant was of the opinion that medium sized manufacturers, such as, Petra Engineering
Industries Co., might undertake the related efforts for dynamic testing themselves. Such medium sized
manufacturers would be characterised by having a consumption of above 100 metric tonnes of HCFC-22
and separate in-house certification and quality control groups. For smaller manufacturers, it might be
substantially more meaningful to create a competence centre in the country, and to allow companies to
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access the centre for know-how and tests. The consultant considered such a centralised approach to be
more meaningful because of the competence needed to run the tests. Smaller manufacturers simply do
not need to carry out the quantities of tests to justify dedicated equipment for these purposes, or the
opportunity to make enough tests to develop the know-how themselves. The consultant was therefore
recommending, in cases where manufacturers produce their own heat exchangers, to support medium and
large manufacturers with testing equipment and limited funding for improved manufacturing tools.
Countries with many smaller companies would be given funding for a dedicated test centre as well as
tools support for the small manufacturers, and for smaller companies with no access to a dedicated test
centre to be given funding to purchase a small test set to test equipment to the best of their abilities.

10. The consultant pointed out that high volume, single model heat exchanger manufacturing might
have different tool needs, depending on the exact flexibility, or lack thereof, of the tools used in the
process. This could not be assessed as part of the study, since it is highly dependent on the particular
set-up. However, apparently the only case where high volume manufacturing might be an issue for
facilities not owned by multi-nationals would be some manufacturers in China, where the funding level
until 2015 has already been agreed. Consequently, there is no immediate need to address this particular
issue.

11. The Executive Committee decided, in the case of several submissions, to determine the maximum
eligible cost for heat exchanger conversion but to withhold the funding amount until the general issue of
funding of heat exchanger conversion has been resolved. The projects concerned and the amount
earmarked is set out in Table 2.

Table 2: Projects in HPMP with funding for heat exchanger conversion not yet approved

Imple- Approved | Additional cost for heat
menting cost exchanger conversion
Title agency | Decision (US $) requested (US $)

Phase-out of HCFC-22 and HCFC-141b from | UNIDO | 60/41* 2,167,033 737,000
the manufacture of unitary air-conditioning
equipment at Petra Engineering Industries Co.
Indonesia: HCFC phase-out management plan | UNDP 64/42** 1,995,519 52,800
(stage 1) (air conditioning sector plan)

* Decision paragraph b: The Executive Committee decided to consider funding of the cost items related to the conversion of the manufacturing of
tube-and-fin heat exchangers, removed from the funding as per sub-paragraph (a) above, when the related policy issue contained in document
UNEP/OzI.Pro/ExCom/60/47 was being considered

** Decision paragraph h: The Executive Committee decided to request UNDP, as the lead implementing agency, to submit a funding request for
heat exchanger conversion as a component of the first tranche of the HPMP for Indonesia, once the Executive Committee had taken a decision on
the funding of conversion for heat exchanger manufacturing, on the understanding that the level of funding would be calculated on the basis of
that decision and would not exceed a maximum of US $52,800 accordingly

12. Contrary to the expectations at the time when the above decisions were being taken, the technical
answer from the study does not state whether re-tooling is or is not needed. While virtually no additional
tools are needed for the conversion, the consultant saw the need for establishment of testing facilities. The
Secretariat, based on the study, calculated the cost levels shown in Table 3 for the two related projects.

Table 3: Suggested level of funding for heat exchanger conversion projects

Title Suggested funding level (US $)
Phase-out of HCFC-22 and HCFC-141b from the manufacture of
unitary air-conditioning equipment at Petra Engineering Industries

Co. 126,500
HCFC phase-out management plan (stage I) (air conditioning
sector plan) 52,800
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Secretariat’s recommendation

13. Based on the above discussion, the content of document UNEP/OzL.Pro/ExCom/62/55 included
as Annex | to this document, and the information provided in the study contained in Attachment I, the
Executive Committee might wish to consider:

(a)

(b)

(©)

(d)

That in cases where the conversion of a manufacturer of air conditioning products to an
alternative technology with substantially higher working pressure is undertaken, and
where this manufacturer has its own heat exchanger manufacturing facility, expenditures
related to dynamic testing of heat exchangers are to be part of the conversion cost in
order to ensure that they are sufficiently pressure resistant;

Requesting the Secretariat to use, for those cases, the technical information provided in
document UNEP/OzL.Pro/ExCom/66/51 and the related technical study, as well as any
other relevant information available to determine the extent to which these costs are
eligible and incremental;

Approving, for the project “Phase-out of HCFC-22 and HCFC-141b from the
manufacture of unitary air-conditioning equipment at Petra Engineering Industries Co.”
(Jordan), additional funding of US $126,500 plus agency support costs for UNIDO of
US $9,488 to cover the costs associated with changes in the heat exchanger production
and testing, in line with decision 60/41; and

Approving, for the stage | of the HPMP for Indonesia (air conditioning sector plan),
additional funding of US $52,800 plus agency support costs for UNDP of US $3,960 to
cover the costs associated with changes in the heat exchanger production and testing, in
line with decision 64/42, and to request the Secretariat to update the Agreement with
Indonesia accordingly when introducing any changes related to the determination of the
baseline consumption for Indonesia.
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1. The Secretariat identified during the preparation for the 59" Meeting of the Executive Committee
an issue related to the cost for conversion of component manufacturing versus incremental operating cost.
Through decision 59/14 the Executive Committee decided to defer the discussion to the 60" Meeting and,
subsequently, in decision 60/45 to defer it to the 61° Meeting.

2. At the 61% Meeting, the issues raised in the related document UNEP/OzL.Pro/ExCom/61/51 were
discussed and resolved, except for the question of funding for the conversion of heat exchanger
manufacturing.  Consequently, the Executive Committee took decision 61/45 (c), requesting the
Secretariat  to prepare a  document, based on the relevant  sections  of
document UNEP/OzL.Pro/ExCom/61/51, on the level of incremental costs related to retooling for
manufacturing of tube-and-fin heat exchangers to be considered by the Executive Committee at its
62" Meeting.

Incremental cost of heat exchangers

3. As part of the review of project submissions, the Secretariat identified as one issue the question of
whether the conversion of heat exchanger production would be considered as an incremental cost. The
following paragraphs attempt to explain the very technical aspects of the issue to enable the Executive
Committee to take an informed decision on the matter.

4. The heat exchanger production referred to in this document relates to the production of
refrigerant-to-air heat exchangers. These consist typically of a number of copper tubes with plate-like
aluminium fins perpendicular to them.

5. The manufacturing of the fins is done with complex dyes which punch and form the fin using
multiple hits. The external diameter of the tubes is minimally smaller than the diameter of the holes in the
fins, so the fins can be aligned easily on a set of tubes. Typically, the tubes have been straightened
previously and bent into a U-shape (“hairpins™), so that each tube goes twice through the heat exchanger;
one heat exchanger can have numerous tubes. The tubes are laced into a stack of fins (up to several
hundred) on a horizontal table. Once all of the hairpins have been placed into the stack of fins, a rod with
a precision ball tip slightly larger than the tubes inner diameter is pushed through each tube, enlarging the
tubes interior and therefore its outer diameter slightly, and so creating a fit between the tube and the fin.
In high speed production all of the tubes are expanded at the same time. In very low volume production,
the tubes are sometimes expanded one tube at a time. These heat exchangers are called tube-and-fin heat
exchangers.

6. Refrigerant-to-air heat exchangers are very common in refrigeration and air-conditioning
systems, in particular in large scale production of systems. In cases of mass production the heat
exchangers are either optimised for each model and purchased from an external supplier or, more often,
optimised for the manufacturer’s model range and made on site. Typically the same external tube
diameter would be used for units with a wide range of capacities. These heat exchangers do not
substantially differ in their design or material between HCFC-22 technology and the various current
HCFC-22 alternatives (except for ammonia and CO,).

7. According to technical experts consulted by the Secretariat, it is not necessary to reduce the
diameter of the tube from the perspective of system performance when changing from HCFC-22 to
HFC-410A or HFC-32; this is also the case for changes to HFC-407C and the hydrocarbons HC-290 and
HC-1270. However, a small adjustment of the tube wall thickness is needed to increase the strength for
the higher operating pressures of HFC-410A or HFC-32. This approach requires significantly less capital
investment in equipment, and is therefore preferred by manufacturers for the initial conversion. Another
alternative is the use of specific, more expensive types of copper for the tubes that makes them more

2
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pressure resistant while having the same dimensions, or a combination of both. Reducing the external
tube diameter, as requested in some project proposals, utilises certain benefits that the properties of
HFC-410A offer over HCFC-22, and results in system miniaturization as well as weight and cost
reductions. The cost savings are so significant that even better heat exchangers can be produced with still
substantially lower operating costs. Project proposals received by the Secretariat show that the
incremental savings can be above US $2/kg of HCFC-22.

8. However, as demonstrated in project submissions, the costs for the retooling of a smaller external
diameter tube are very significant. Heat exchangers for CO, based systems would potentially need to use
smaller diameter tubes because of the very high operating pressures of CO, systems and the different
capacity per volume. Systems using flammable refrigerants (hydrocarbons and, to a smaller extent,
HFC-152a and HFC-32) can reduce the refrigerant charge substantially by using smaller diameter tubing
and thus enable the use of using flammable refrigerant in such refrigeration equipment with little
additional safety requirements as compared to present HCFC systems.

9. The machines for the production of heat exchangers are to some extent customized, in particular
for the external tube size. A change in external tube size will lead to a replacement need for the
equipment, in particular the dyes for manufacturing of fins, the machines to bend the copper tubes, auto
brazing equipment and the machines used to expand the tubes. For the production of consumer products
(room air conditioners, etc.), all of these are usually fully automated precision production machines with
relatively high modification or replacement costs. Commercial and industrial products are often
manufactured with a lower degree of automatisation to allow for custom specific designs. However, the
machines required are also high precision machines.

10. Companies are currently used to manufacturing their own heat exchangers in-house, which
provides them with a higher flexibility in designing and manufacturing larger air-conditioning systems
according to customers’ specification, and might also yield some savings in operational costs. In almost
all cases brought to the attention of the Secretariat, the refrigeration and air-conditioning manufacturers
produced their own heat exchangers in-house.

11. After the 61 Meeting, the Secretariat continued discussions with the agencies as well as with
industry representatives during a mission to China. The concept of the Secretariat’s paper was repeatedly
explained. One agency, in particular, referred to the possibility of improving the energy efficiency of air
conditioners through re-design and optimisation of the heat exchangers. Industry representatives referred
to the examples from peer companies where the related conversions, in particular to HFC-410A, had
taken place and where the heat exchangers had been also modified, and saw the conversion of the heat
exchanger production as organically linked to the conversion of the manufacturing line.

12. In these discussions, the Secretariat referred in particular to the Executive Committee’s
decision 61/44, where the Secretariat was requested to maintain the established practice when evaluating
component upgrades in HCFC conversion projects for the refrigeration and air-conditioning sectors, such
that after conversion the defining characteristics of the components would remain largely unchanged or,
when no similar component was available, would only be improved to the extent necessary to allow the
conversion to take place. The Secretariat did not question whether or not the conversion of a heat
exchanger line would be organically linked to the refrigerant conversion or not but whether, given the
lack of technical need and the additional operating benefits, the conversion would need to be supported by
the Multilateral Fund. While the technical content of the arguments provided by one implementing
agency regarding energy efficiency is not disputed by the Secretariat, activities with the sole purpose of
improvements in energy efficiency are not eligible under the Multilateral Fund. Should a beneficiary
wish to convert the manufacturing to achieve energy efficiency benefits, this would require counterpart
funding or co-financing.
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13. It was suggested to all stake holders that entered into discussions with the Secretariat regarding
this point to provide in writing any technical reason for the change of the external diameter of the tube,
excluding those related to improvements in energy efficiency or cost. Despite providing clear deadlines
and, in one case, sending out a reminder, the Secretariat has not received any contributions regarding this
point.

Secretariat’s recommendation

14. Based on the discussions reported above, and on decision 61/45, the Secretariat is proposing to
the  Executive  Committee  the same  recommendation as those  contained in
document UNEP/OzL.Pro/ExCom/61/51 presented to the 61" Meeting, namely that the Executive
Committee might wish to consider not treating as an incremental cost, in the case of conversion of
refrigeration or air-conditioning systems from HCFCs to non-flammable HFCs, the capital costs related to
retooling for a change in diameter of the tubing within tube-and-fin heat exchangers, since these are
considered to constitute an avoidable technology upgrade.
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A STUDY OF FIN AND TUBE COIL MANUFACTURING CHANGES FOR
CONVERSION FROM R-22 TO R-410A

Summary

The Multilateral Fund for the Implementation of the Montreal Protocol (MLF) supports the conversion
of manufacturing facilities in developing countries that use ozone-depleting substances. A study was
performed to determine the potential manufacturing cost changes for conversion from refrigerant R-22
to R-410A for fin and tube coils used in residential and unitary air conditioning products. Fin and tube
coils are the dominant type of air-to-refrigerant heat exchanger used for evaporators and condensers of
air conditioning equipment. R-22 was the refrigerant of choice for residential and small unitary air
conditioning systems before its phase out in developed countries in 2010. R-410a is the current
refrigerant of choice therefore a good candidate for conversion of products manufactured in developing
countries. Since R-410A has different thermodynamic and physical properties, one might expect
significant changes in heat transfer performance and the ability to retain pressure, especially in hot
climates. It follows that coil design changes would be necessary and be accompanied by changes in
manufacturing processes, capital equipment and tooling. However, the experience of major
manufacturers in the period leading up to the 2010 phase out of R-22 is quite the opposite. The
evaporator and condenser coils change very little and then only in regards to smaller features necessary
to accommodate fatigue strength considerations. Therefore, major capital equipment purchase should
be unnecessary. Some tooling cost may be necessary to manufacture the feature changes resulting
from fatigue considerations while insuring robust manufacturing processes, but this should be small. Of
special note is the need for manufacturers of coils to be able to rapidly run fatigue tests on coil features.
A fatigue test facility is a non-trivial capital expense that must be borne by the manufacturer, or
provided by an institution or private service provider that could provide the fatigue test service
economically to several manufacturers on demand.

1. Introduction

The Multilateral Fund for the Implementation of the Montreal Protocol (MLF) supports the conversion
of manufacturing facilities in developing countries that use ozone-depleting substances. The MLF has
asked for a study of the manufacturing cost changes that are necessary to change from R-22 to R-410A
for fin and tube coils that are used in smaller air conditioning products, namely 2 to 5 kW residential
room air conditioners (mini-splits) and 30 to 1000 kW unitary products. In order to determine the
design changes associated with a refrigerant conversion, the refrigerant properties differences must first
be considered.

Since R-22 and R-410A have significantly different thermodynamic and physical properties, one might
expect significant changes in coil design. It follows that manufacturing processes, capital equipment and
tooling may need to be replaced or changed. This study will examine the two basic aspects of the design
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problem, namely heat transfer and the ability to retain pressure especially under the extreme conditions
that are prevalent in hot, arid climates. Manufacturing changes will be noted and their costs estimated.

2. Baseline Coil Information

The following represent the typical base line coils or design standard that were used in products before
conversion to R-410A. The term “design standard” means that most manufacturers would use coil
design that are very similar though not identical. For example, the actual configuration of the aluminum
fin may be different between manufacturers. The standards described below have been the used for
more than 20 years. Enhancements to standard design occur as engineering and manufacturing
technologies improve. Enhancements are usually aimed at improving performance and decreasing size
and cost. These design standards are key to hitting ever increasing energy standards, maintaining a
physically small product, and removing material cost —in other words, being competitive in the market
place. The design standard is supported by raw material suppliers of fin stock, coil tubing, U-bends,
etc., and are widely available from multiple suppliers. Companies that currently do not follow these
design standards will be uncompetitive. Coil designs in developing countries may or may not be similar
those described notably in the tube diameter which essentially changes all manufacturing tooling. In
low volumes, the investment to upgrade typically is a barrier. These manufacturers would require a
substantially larger upgrade of their manufacturing facilities than described in this report, leading to
substantially higher conversion cost. While this would result in the ability to use R-410A and have
competitive costs, it also represents an opportunity to increase product quality. Further discussion of
such an upgrade is beyond the scope of this report

The term “internally enhanced” tube (IE) is used. This means that the tube has a raised surface on the
internal surface similar to that shown below. The tube wall thickness noted in the detailed descriptions
is the root diameter of the un-finned surface, “w” . |E tubes have been available since the early 1990’s
and the reason to change from smooth bore to an IE surface is purely economic, and has nothing to do
with conversion to R-410a. The product design engineer has a fixed amount of cabinet space into which
the coils must fit and changing the physical size of a cabinet is undesirable. In many cases, substitution
of IE tubes instead of smooth bore would allow a change in the number of rows (from4to3ina
condenser coil, for example) within the same cabinet size. A cost reduction would result, with no loss of
performance. The design standard uses IE tubes as this type of tube has been widely available for many
years. As product design engineers move towards higher efficiency within minimum space
requirements, IE tubes are a practical necessity.
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2.1 Unitary (30— 1000 kW): The evaporator and condenser coils a contained within a complete
packaged product, generally located on a roof. Equipment of this size and type generally has two or
more separate refrigeration circuits each driven by one or more scroll compressors. The equipment
responds to changes in ambient temperature or reduced cooling loads by turning a compressor off
(called “unloading”) is achieved by turning off compressors within the circuit or an entire circuit. A coil
slab is the complete manufactured coil. The coils may contain both refrigerant circuits in a single coil
slab with the circuits intertwined to improve part-load performance. Multiple coil slabs are typically
used for the higher capacity equipment

Triangular
Tube Pitch

U-Bend or
Hairpin Bend

Aluminum Fins

Evaporator: 3/8 inch O.D. IE copper round tube coils with configured aluminum plate fins
mechanically bonded to tubes was the design standard prior to R-410A conversion. Many, but not all,
coil designs had been changed to IE tubes prior to conversion. Again, use of IE tubes in not required for
conversion to R-410A. The coils have 2 to 4 rows of tubes typically on a 1.0 inch triangular pitch. Coil
height, length, rows, and number of refrigerant paths (coil tube circuits) varied by the refrigeration
circuit capacity. A combination of hairpin bends and U-bends were used to connect tubes in each coil
tube circuit. The U-bend to tube joints were flared and brazed. Tube wall thickness was .0118” to .014”.
The first tube in each coil tube circuit was fed by a dedicated distributor tube connected to the coil
tubes using either a crimped or flared brazed joint design. Each distributor tube was fed from a
multiport distributor device. To maximize performance of the heat exchanger and minimize tube wall
thickness required, the un-fined length of each tube protruding from the aluminum fins was kept to a
minimum, usually around .5”. Overall refrigerant flow was controlled by a thermal expansion valve
(TXV). Outlet headers, a larger diameter copper tube or pipe used to collect refrigerant from multiple
tubes, use pierced or pierced and flared braze joints with mitered or saddle type joints for the gas outlet
line.

Condenser: 3/8 inch O.D. IE copper round tube coils with configured aluminum plate fins
mechanically bonded to tubes was the design standard prior to R-410A conversion. Many, but not all
coil designs, had been changed from smooth bore to IE prior to conversion. Again, use of IE tubes is not
required for conversion to R-410A. The coils had 1 to 3 rows of tubes on a 1.2 inch triangular pitch. Coil
height, length, rows, and number of refrigerant paths (coil tube circuits) varied by the refrigeration
circuit capacity. A combination of hairpin bends and U-bends were used to connect tubes in each coil
tube circuit. The U-bend to tube joints were flared and brazed. Tube wall thickness was .0118” to .014”".
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The first tube in each coil tube circuit was fed from a cylindrical header, and the last tube in each coil
circuit was connected to a cylindrical outlet header all made from copper. The diameter of these
headers varied by overall refrigeration circuit capacity with the largest outside diameter about 1.625” .
To maximize performance of the heat exchanger and minimize tube wall thickness required, the un-
fined length of each tube protruding from the aluminum fins was kept to a minimum, usually around .5”.
Both inlet and outlet headers use pierced or pierced and flared braze joints with mitered or saddle type
joints for the gas inlet and liquid outlet lines

2.2 Residential (2-5 kW): Equipment of this size and type generally has a single refrigeration circuit

driven by one non-unloading (no capacity control) rotary compressor. The evaporator coil is contained
with a wall mounted cassette mounted in the air conditioned space, while the condenser coil is located
outdoors.

Both the evaporator and condenser coils use 7 mm. O.D. IE copper round tube coils . Fins are highly
configured aluminum plate fins mechanically bonded to tubes. The wall thickness is 0.25 mm. Though
not the design standard, some manufacturers may have already switched to lower cost aluminum tube
or smaller diameter (5 mm. or 6 mm.) before R-410A conversion. Small product typically has single row
coils, whereas larger product uses two row coils. Both evaporator and condenser coils are made using
hairpin bend and brazed U bends. In the case of evaporators, a short orifice is used to feed the circuits.
Headers are made from small diameter copper tube. All connections are brazed.

2.3 Manufacturing Processes: The following describes some characteristic manufacturing features
of the standard manufacturing process that were used for HCFC-22 coil manufacturing. Without going
into detail, the standard manufacturing processes were generally used for both residential and unitary
coils. The degree of automation, and the use of alternative processes is driven by volume/cost,
manufacturing cycle time, manufacturing capacity investment considerations, and manufacturing quality
control. By inspection it can be seen that most tooling would be sensitive to either O.D. or I.D changes
(e.g. a fin die or hairpin bender), whereas the major capital equipment would not need to change (e.g.
the fin press or bending mandrels)

Fins: Punched using a high speed progressive die fin press with automated feedstock and fin stacking.
Fins are highly configured with features to improve air side heat transfer.

Tube Cut Off: Automated feed and tube length cut-off machine
Hairpin Bender: Hairpin bender with mandrels and automated feed

Headers: Punched or drilled with automated or semi-automated machines. T-drill or similar may be
used for more robust brazed joint, especially in larger diameter headers

U-Bends: Purchased component (brazing filler metal rings may be included)

Coil Structural End Plates and Supports: Sheet metal is punched using a progressive pierce and bulge
dies on a conventional punch press, or alternatively, an NC punch press with appropriate tooling

Coil Assembly: Manual or semi-automatic
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Tube Expansion: Ball end multi-rod expanders or ball expanders driven with hydraulics for low volume
coils

Headers, U-bend or Distributor Tubes: The coil tube is crimped to form a brazing joint for the
distributor tube. Brazing is done with a dry nitrogen purge. Single and multi-tip torches are used.

Pressure and Leak Test: Air under Water immersion in water tank with safety cover
Final Product Pressure and Leak Test: Dry air plus halogen leak detector

Process Fluids: All process fluids used during manufacture and testing of the heat exchangers are
selected to be compatible with R-22 and the refrigeration mineral oil

3. Heat Transfer and Refrigeration Cycle Performance

The calculated coefficient of performance, COP, for R-410A vs. R-22 in a refrigeration cycle at a variety
of conditions shows that R-410A should be 5% to 7% lower than for R-22. The efficiency of a
refrigeration cycle is typically provided as the COP, and is calculated by using the refrigerant
thermodynamic properties, as the cooling effect divided by the energy, i.e. the electricity needed to
drive the cycle. The experience of major manufacturers has shown that this is not the case. When R-22
is replaced by R-410A in a refrigeration system the performance is nearly identical. Some studies have
actually shown a slight improvement with R-410A. This anomaly is explained by the superior transport
properties of R-410A which result in improved heat transfer and lower component pressure drop in the
evaporator and condenser. This improved heat transfer performance overcomes the poorer cycle COP
resulting in nearly identical overall equipment performance. Product rating programs used to report
performance of equipment provide for variation in component performance and manufacturing by
allowing tolerances, typically 5% or more. The differences in coil performance between R-22 and R-
410A were small enough to not be reflected in catalog or electronic selection programs for the
equipment, once compressor flow adjustments were made. Therefore, coils were not changed. In other
words, changes to heat exchanger face area, fin spacing, number of rows, and number of coil circuits are
not needed when changing from R-22 to R-410A.

However, the critical temperature for R-410A is 43 degrees F lower than for R-22. The closer a
refrigeration cycle operates to the critical temperature for the refrigerant the lower the cycle COP will
be. Studies have shown that R-410A performance, both capacity and COP, decreases more rapidly than
R-22 as the ambient temperature and the cycle condensing temperature is increased. This effect begins
to be significant (>5%) at ambient temperatures above 50 C. The practical importance of this effect is
minimal. Residential and unitary systems are typically designed for 40 C. At elevated temperatures, a
fall off in performance occurs, as well as a fall off in refrigeration capacity. Usually refrigeration system
capacity is oversized to insure that comfort is not lost and the fall off in performance is accepted. It
should be noted that operation at 45C to 50 C is an extremely unusual application, lasting for relatively
short periods of time annually, though they can last for a large part of successive days. For example,
weather data for Abu Dhabi located in the United Arab Emirates, Middle East Region, shows that only
0.4% of the time does the ambient temperature exceed 45 C. So, manufacturers do not typically
change coils for the purpose of providing product to hotter climates. This remains true for R-410A.
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4. Pressure

The pressure of R-R410A compared to R-22 is nominally 60% to 70% higher at a given temperature, a
very large difference. The subject of coil changes that are necessary to withstand the pressure
difference revolves around the design practices and governing codes and standards. Coils do not fall
under the rules of pressure vessel codes, such as ASME Section VIII or similar pressure vessel codes.
Coil design will normally fall within local codes or standards.

One widely used standard, ASHRAE 15, Safety Standard for Refrigeration Systems, and its companion
standard, UL 1995, Heating and Cooling Equipment, govern product safety for end use air conditioning
products in North America. ASHRAE 15 has its origins in the U.S. but it is a globally recognized and
adopted standard. A similar but not identical standard, ISO 5149, is used in Europe. UL standards are
frequently adopted international as well. These standards and others like them in various countries
provide the basis for pressure design of coils and other components such as compressor that do not fall
under the pressure vessel codes.

Using UL 1995, one manufacturer reports that the design pressure for the R-22 coils was set at 450 psig,
corresponding to 160 F. In this case, the design pressure is not set by the ambient temperature for the
application, but rather by consideration of temperatures that may be experienced during shipment,
usually in a non-ventilated closed truck or trailer parked in a hot location such as Arizona. This means
that application in hot ambient temperatures is already within the design pressure. Per UL 1995 (Clause
61) the design is required to pass a burst test with a minimum burst pressure of 2250 psig or 5 times
design pressure. For R-22, the coils achieved 2250 psig using the standard design and standard
manufacturing methods. Employing the same test method and strength requirements to coils using R-
410A would result in a minimum burst test pressure of 3900 psig. Designing coils to meet this pressure
would not be practical, since the tube wall thickness increases proportionately with pressure. Therefore
the wall thickness would have to be 70% higher | The additional copper would be very costly. Also, the
flow area within the tube is decreasing as the square of the diameter change, and the pressure drops
would increase accordingly. Even though pressure drop a pressure drop change is naturally offset by the
lower volumetric flow rate per kW cooling (30% lower for R-410A) and re-circuiting the coil can also
provide relief, we would still expect that the increased parasitic loss would be a significant disadvantage.
So an engineering solution must be used.

The UL burst test requirements using a design margin of 5 times design pressure is a simple method of
demonstrating adequate margin of safety against pressure. National codes and standards typically
allow a more careful examination of the actual conditions through more sophisticated tests and/or
analysis. See Section Al for more discussion. Regarding coils used in air conditioning products, UL
1995 Clause 62 (Fatigue Test Analysis), provides an alternative method. This method is a more
sophisticated alternative engineering method, employs well known and demonstrated engineering
principles, and is very rigorous because it subjects samples to real world stresses. For this method, test
samples are subjected to a 250,000 cycle pressure test between low and high side design pressures for
the actual application, followed by a burst test at 3 times the design pressure. This method recognizes
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the real application, where pressure changes occur during cooling cycles that are the result from
shutdown when the coil cools to ambient to a higher pressure from operation. Also, a burst test
pressure is required at 1950 psig or3 times design of 650 psig. The test must be repeated annually on
all discrete heat exchanger designs in a manufacturer’s product line, essentially a quality control
function on design change control and manufacturing processes. Manufacturers of R-410A equipment
have found that most existing coil heat exchangers designed for R-22 pass this test with minimal design
changes, but with some feature changes, such as the length of un-finned tube protruding from the coil
face and end support. Universally they report that there are no coil failures with either R-22 or after
conversion to R-410a.

The method described above is equally applicable to smooth bore tubes and IE tube coils and any
tube diameter 3/8 inch and below. See Section 5 for other diameter tubes, not meeting the design
standard of Section 2.

Manufacturers report many fatigue test failures during qualification testing. These are areas of
weakness. They are discovered and resolved, one by one. Design feature changes, and the use of
higher quality components generally will solve the design problems that are found. Areas of particular
importance are:

e Coil heat exchanger tubes must be free of defects such as dents and scratches.
Damaged tubes will always produce a fatigue failure.

e The length of coil tubes not covered by fins must be kept to a minimum. . Recall that in
the R-22 designs, 0.5 inches of length was common. This was reduced for R-410A
designs. This is particularly true for the heat affected zone in tubes outside of the coil
casing that are brazed to U-bends or header stubs. The fins provide support for the tube
and increase the burst strength of the tube

e Header joint designs need to include reinforcement such as saddle type or flared holes
that provide sufficient overlap of material for a sound braze joint. This means that a T-
drill or similar is necessary. Cost of T-drill tooling is typically less than $5000 per drill
head.

e U-bends are generally purchased and it may be necessary to increase the wall thickness
of these parts since they will thin during U-bend manufacture.

e The crimp joints that are sometimes used for distributor to coil attachment will not
always be sufficiently strong. Designs may need to be changed to a flared end
distributor or a purchased flared adapter for this joint. Tooling changes for these
features are typically less than $10,000 per station.

e For headers larger than 1.375” diameter “K” wall thicknesses will probably be required
(Reference ASTM B88. This means that wall thicknesses for the particular diameter used
is about 20% increased). The heavier wall tube should work on up to 1.625” diameter
headers. This does not eliminate the need for high quality saddle or flared header to
tube joints.
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e Brazing quality must be carefully controlled. Especially important are standard brazing
procedures and qualification of the manufacturing technician, use of a nitrogen purge
during brazing and routine inspection to insure quality. Nitrogen purge is used to insure
cleanliness inside the refrigeration system and pressure integrity of the joint. Nitrogen
is typically provided in bottle form at the brazing station. Bulk tanks and piping could
be used for very high volume production. Careless brazing is the largest single source of
leaks, which is the largest single warranty expense for manufacturers, and is especially
problematic with higher pressure R-410A.

Purchase or lease of fatigue test equipment that can induce rapid pressure cycles using hydraulic fluids
will be a direct cost associated with the changeover to R-410A. This cost will vary depending on the
size and number of testers required to support a particular facility. One manufacturer of unitary
equipment reports a capital cost of $100 K for a fatigue test facility for a multi-port tester, so the capital
cost in not trivial. This facility tests multiple large coils at once, and was booked solid during the years of
engineering work leading to R-410A conversion. A single port tester designed for smaller residential
coils is estimated to cost $30,000. All facilities are automated to rapidly run the fatigue test in a
reasonable period of time. Facility cost is more a function of the number of ports than the physical size
of the tester.

An institution or private service provider could purchase and install the necessary facilities for use for a
group of manufacturers. In this case the service is provided as an expense, rather than a capital
acquisition or lease. One manufacturer reports that the cost of a single test at an agency is
approximately $4000. Multiple tests of a typical design would be normal to pass the fatigue
requirements. Then the design features would be used over an entire product family. However, since
coil features do change over a product line (additional rows and differences in headers for example), it
would be prudent that the final designs of each coil be final tested wherever any design feature is
different. In doing so it would not be unusual to have a finding or two. The total expense can be
estimated and compared with investing in a test facility. For purposes of the exercise assume 5 sizes of
product within a family are manufactured, each with slightly different features that affect pressure
integrity. Further assume that a small single port tester costing $30,000 could serve the need for
qualification testing.

Basic design qualification = 4 tests @ $4000 = $16,000

Final check of each size, with 2 retests due to test findings = (5 + 2) @ $4000 = $28,000

Total Expense = $44,000

Cost of a Test Facility = $30,000 + labor to run the tests + incidentals (energy, spare parts, maintenance)

The above represents a realistic number of tests for the given scenario. Obviously the number of coil
variations is driving a large part of the expense. In this case, depending on financing available to a
particular company, a rational choice can be made between expense or capital investment. Since there
are ongoing expenses to run a test facility, the capital investment choice is typically more attractive if
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there is already a permanent lab facility that is engaged in various testing activities as product designs
continue to evolve.

As previously noted in the R-22 baseline discussion, process fluids and mineral oils are carefully chosen
and qualified to insure compatibility with R-22. Systems using R-410A employ synthetic POE oils, or PVE
oils, so different process fluids that do not cause chemical interaction must be used. This is essential
engineering work and failure to pay attention to these details will result in breakdown of the oil, and
ultimately lead to very expensive compressor failures.

Most manufacturers using round tube heat exchangers for R-410A continue to use 3/8 inch tubes for all
circuit sizes. The lower volume flow rates of R-410A allow coils tubes to drop to 5/16” diameter
(unitary) or 5 mm. or 6 mm. tubes (residential). Residential product will likely see more pressure to
use all aluminum coils. All of these are driven by lower cost and will happen over time. These are not
related to a R-22 to R410a conversion per se, although the high density R-410a makes a change to
smaller diameter tube attractive, since pressure drop, a parasitic loss, will not be excessive.

Finally there needs to be a remark about maintaining performance. Maintaining performance during an
R-410A conversion is non-trivial manufacturing engineering and quality control work. Some areas to
pay close attention are:

e  Coil Circuiting: Since the volumetric flow rates (or CFM/ton) are different, it follows that coil
circuiting will likely change such that the tube surfaces are fed as nearly uniformly as possible.
In doing so, performance is maintained or in some case increased. Coil circuit changes generally
do not involve tooling changes, just assembly change.

e State of Coil Tooling: The tooling used in manufacturing simply wears out or need maintenance
from time to time. A good example is a fin die. Worn dies lead to cracked collars, the main
bonding area between the tube and the fin. A poor bond due to a cracked collar will degrade
coil performance significantly. No conversion program should be undertaken without an
examination of the state of the tooling.

e Brazing: It seems that the universal experience among manufacturers is the inability to
maintain high brazing quality. Leaks and other failures within the coil or product assembly,
usually found in the field, are very expensive. The higher pressures of R-410A make this
problem especially noteworthy.

e Coil damage during assembly, test, packaging and shipment: Experiences is that R-410A coils
are much more sensitive to leak or failure than R-22 as a result of manufacturing or shipping
damage to coils.

5. Coil Designs not meeting the Design Standard

As discussed in Section 2, prevailing design standards and the use of the methods describe in Section 4
yield a successful conversion from R-22 to R-410A. Essentially, any tube diameter 3/8 inch and below
can be successfully converted without major cost penalty or investment. It is logical to ask, what
happens if the design does not meet the design standard, notably in the area of tube diameter?
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Reaching back in time, coils were made with 5/8 inch (usually used with R-12, a lower pressure
refrigerant) and % inch tubes. So it is possible that an older legacy design is currently manufactured for
R-22 coils.

As discussed earlier, the tube wall thickness increases linearly with pressure. It also increases linearly
with tube diameter. So a % inch tube, for example, would have a tube wall thickness two times that
needed for R-22 (70% for pressure, 30% for diameter). This is twice the amount of copper and an
enormous cost penalty. So, increasing the tube wall thickness, either on the I.D. or O.D. would not be an
attractive solution. Assuming that the alternative fatigue method could be employed is a reasonable
assumption, but there is really no experience among major manufacturers that would validate it. One
other potential solution is a change in the tube alloy for increase strength. But then, special alloys are
not cost free, since there is little supply base for this type of coil tube. One must assume that the
solution is some combination of the potential changes — thicker walls, different alloys, and use of the
fatigue method — but the exact solution will depend on the singular case.

6. Summary of Manufacturing Costs for Conversion

In Section 2, a summary was given of the primary manufacturing processes and tooling. Given below is a
summary of the manufacturing tooling changes that might be expected for a typical conversion. There is
no major capital cost for conversion.

Fins: NO TOOLING COST
Tube Cut Off: NO TOOLING COST

Hairpin Bender: NO TOOLING COST

Headers: T-drill or similar must be used. T-drill is a trade name and other alternatives exist to raise a
more robust brazing collar on the header. T-drill heads cost approximately $5000 per drill head and can
be used with the either manual or automated drilling equipment. The basic drilling equipment itself
does not change. The number of drilling machines and type is widely variable depending on production
volumes.

U-Bends: NO TOOLING COST

Coil Structural End Plates and Supports: NO TOOLING COST
Coil Assembly: NO TOOLING COST

Tube Expansion: NO TOOLING COST

Headers, U-bend or Distributor Tubes: Crimping of distributor tube to coil tube estimated to cost less
than $10,000 per station. A station is the production facility where the work is performed, usually one
per production line.

Pressure and Leak Test: NO TOOLING COST

Final Product Pressure and Leak Test: NO TOOLING COST
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Process Fluids: Process fluids must be carefully examined for compatibility with R-410A and POE oil. It
should be noted that PVE oil is also used with R-410A. This is engineering work, but not a manufacturing
cost.

Though not a manufacturing tooling cost, a Fatigue Test Facility cost is approximately $100,000 for a
large, multiport tester but could range down to $30,000 for a small single port tester.

In cases where current coil designs at a manufacturer do not meet the design standard and it were
possible to create an engineering solution as discussed in Section 5, the same capital cost requirements
shown above may be assumed. The number of tests needed to qualify a larger diameter tube may be
higher than that experienced on small diameter tubes (3/8 inch and below). Also, such manufacturers
are also likely to incur significantly increased per-unit costs through the increased use of copper and/or
more pressure resistant alloys, whichever may be applicable.

7. Conclusion

The work done in the period leading up to the 2010 phase out of R-22 by major manufacturers
indicates that R-410A coils do not require major design changes. Essentially an R-22 design standard
coil will yield the same or better heat transfer and handle the higher pressures. Neither the tube O.D.
the I.D, nor the standard materials of construction needed to change. Coil circuiting changes are
common to optimize performance within the design space. Regarding pressure, including but not
limited to the higher temperatures of the places like the Middle East, coils cannot withstand the typical
burst test pressures used to qualify R-22 coils, and an alternative method to insure safety must be used
for R-410A. Engineering work must focus on fatigue strength rather than simple burst test limits. The
broad experience is that a good analytical and test program likely produce a successful design without
major change, but small feature changes (such as unsupported tube length). Therefore, the capital
equipment to manufacturer R-410A coils is essentially unchanged. Small tooling changes may very well
be necessary, but these are low in cost. For example, a T-Drill head used on a manual or NC drill press is
less than $5000. Of special note is the need for manufacturers to be able to rapidly run fatigue tests on
coil features. A common experience was to try a variety of design features in areas of fatigue failure. A
facility large enough to handle the largest unitary coils cost approximately $100,000. A fatigue test
facility is a non-trivial capital cost that must be borne by the manufacturer, or provided by an institution
or private company that could provide the service economically to several manufacturers on demand.
Finally, attention to details, such as process fluids changes, the state of manufacturing tooling, and
quality brazing are among the items that cannot be overlooked for a successful conversion. This is
engineering work, not generally related to capital or tooling costs.
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Annex A

Annex A is reserved for more detail on certain subjects or to answer several additional questions that
were posed in the inquiry that have not been addressed, but are not central to the issue of
manufacturing conversion costs when changing to R410A.

Al. Pressure Design

The subject of pressure design is somewhat complex. Two basic philosophies exist within the global
community of codes and standards.

1. Simplified design by rules
2. Sophisticated design by analysis / test

For example, ASME Pressure Vessel Code, Section VIII Div. 1 for the design of unfired pressure vessels
gives a thorough, albeit simple and conservative, set of design rules for safe design of pressure vessels.
Alternatively, for unusual designs or in cases where there is unusual manufacturing or costs implications
a alternative method is given in Div 2. Both methods produce safe design for pressure containment but
the Div. 2 is much more sophisticated and demanding.

Pressure vessel codes do not exist for coil designs and other components such as compressors. In these
cases, other standards can be found within the international community. For example, in North
America, ASHRAE and UL standards are used. In Europe, ISO 5149 and IEC PED are parallel standards
that are used. For automotive applications, SAE J 6.9 is widely used throughout the world. All such
standards follow a similar pattern to that describe above. These standards usually allow a simple
method, or alternative methods using more sophisticated tests and/or analysis.

Regarding fatigue testing, well know engineering methods are applied, but also proven before the
standard is adopted. In the case of UL 5149, in the mid-1990’s work was done within UL and with
several manufacturers to demonstrate safety and equivalency of the alternative methods. In doing so, a
realistic assessment of the real loading and stresses is necessary. UL reports that over 300 independent
tests were done by them, independent of hundred of tests done by various manufacturers to
demonstrate that the alternative method that UL finally adopted was indeed safe and equivalent or
superior to a simple one- time pressure test. I1SO 5149 contains a similar method.

A2. Alternative Refrigerants

While this study is not intended to discuss alternative refrigerant choices in great detail, discussion of
conversion to a number of alternative refrigerants was requested. R-410A is the current refrigerant of
choice for developed countries for unitary and residential air conditioning systems and therefore a good
choice for developing countries. However, any refrigerant choice is ultimately a trade-off between
ODP, GWP, safety and performance as well as wide commercial availability for service. See table below
for a comparison of select refrigerants that are suitable for smaller residential and unitary air
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conditioning systems. ltems highlighted in Italics == below indicate a significant shortcoming. ltems
highlighted in underlined Italics ++ are best in class.

Comparison of Refrigerant Properties for Select Refrigerants

oDP GWP Simple Cycle COP* | ASHRAE Class
R-22 .034 == 1700 6.98 ++ 1
R-410A 0 1725 6.485 (-7%) 1
R-32 0 650 ++ 6.735 (-3.5%) 2L ==
R-407C 0 1610 6.744 (-3.4%) 1
R-404A 0 3300 == 6.282 (-10%)== 1

*The simple cycle COP does not reflect any positive transport properties benefit discussed in Section 3.

As can be seen in the table, there is no perfect refrigerant — all have some shortcoming. Among the
refrigerants suitable for application for comfort cooling in residential and unitary equipment (i.e., a low
CFM/ton), R-410A has zero ODP and is an ASHRAE Class 1 refrigerant (means no unusual safety
restrictions). It is a binary blend of 50% of R-32 and 50% of R-125 and accordingly has a relatively high
GWHP (1725). This means that it will likely come under regulatory pressure in time future. A smaller
number of systems, notably in Japan, use R-32 today. R-32 has zero ODP and a low GWP (650), but it is
a moderately flammable that was recently reclassified from ASHRAE Class 2 to 2L. Japanese codes
have been relaxed to allow its use, but this is not the case in many countries, especially so in North
America. Class 2L refrigerants are unusual in that they are characterized by very low flame speeds
leading to weak and unstable ignition events, and are difficult to ignite due to their high Lower
Flammability Limits (LFL). Therefore, there is a technical basis for relaxing application codes for Class
2L refrigerants. ASHRAE 15, Safety Standard for Refrigeration Systems, is in the process of introducing
special rules to allow the use of Class 2L refrigerants. The rules are expected to be only moderately
more restrictive than Class 1 (non-flammable), making their possible use more popular. R-407C, a
ternary blend of 23% of R32, 25% of R125 and 52% of R134a, was used for a short period of time
notably in Europe and to a lesser extent in North America. It has zero ODP and a high GWP (1610).
Unlike other blends and single component refrigerants, it fractionates within a heat exchanger and
produces a non-constant condensing or evaporating temperature (known as ‘glide’). This causes higher
compressor lift and higher power, not reflected in the calculated simple cycle COP value. It is not widely
used and survives today as a zero ODP transitional refrigerant for legacy products that are not
economical to redesign in a new refrigerant. R-404a was also used briefly, notably in Europe. Itis a
very poor performing refrigerant in air conditioning systems, and it is not used today in any major
product line. Any of these refrigerants can likely be substituted into a R-22 coil design and produce an
acceptable design without major change, essentially for the same reasons that R-410A can. At this
juncture, the refrigerant producers have not yet suggested a clear alternative to replace R-410A. Again,
finding a refrigerant suitable for small air conditioning systems with zero ODP, low GWP, high
performance and no unusual safety code restriction is no easy task.
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Conversion to R-410A in many developed countries was accompanied by performance increases that are
required by governments or national codes or standards. It is becoming more understood that the
major component of global warming is the power consumption of the air conditioning product during its
lifetime of use, not the direct GWP effect of refrigerant leaks. Refrigerant leaks are insignificant in
smaller air conditioning systems but not without engineering effort and attention to quality details in
manufacturing.

A3. Coil Efficiency

Two inter-related questions concerning coil efficiency were posed in the inquiry.

1. What is the effect of an increase in the air side surface of 10%, 20% and 50%. This question is
essentially the same as a second question in the inquiry relating to the effect of a change in
evaporating and condensing temperature.

2. Comment as to the built-up of dust or dirt at the heat exchanger during regular operation,
assuming rare cleaning, and how common these conditions are.

The power consumption of the end use product is the usual performance metric expressed as COP or
EER at a set of standard temperatures, or Seasonal Energy Efficiency Rating (e.g. SEER) which represents
a mix of temperatures encountered during a typical cooling season.

The difference between the saturated evaporating temperature and the saturated condensing
temperature is the pressure difference or ‘lift’ that the compressor must work against. The smaller the
difference is, the lower the power consumption.

The difference between the ambient temperature and the saturated evaporating or condensing
temperature is known as the ‘approach’. The approach temperature is one measure of coil
performance. The lower the approach temperature, the lower the lift, and therefore the lower the total
power consumed by the compressor (offset by any increase in fan power). A picture may help .
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A variety of coil feature can be changed to improve heat transfer performance and lower the approach
temperature in any coil. These include:

e The configuration of the aluminum fin surface (usually proprietary and patented features)

e Increased fin spacing (but fan power is negatively affected due to increased pressure drop)

e Refrigerant metering and distribution (uniform distribution is desired)

e Increased air flow across the coil (but higher fan power negatively affects total product power
consumption)

e Enhancement of the internal surface of the tube

e Tube pitch (described in Section 2.1)

e Fluid flow within the circuit — inter-weaving of tubes

e Coil surface increase through additional number of rows or total surface area (but air flow and
fan power must increase too)

The engineering of coils is complicated, since there are trade-offs. For example, increasing the fin
spacing improves the approach temperature, but at the expense of additional fan power. So, overall the
product performance may not improve at all. Certainly adding surface through surface area or
additional coil rows will lower the approach temperature, but it is costly and decreasingly effective.
Increasing coil surface follows the law of diminishing returns, until additional coil surface will have no
positive effect at all as shown in the graph.

Typlcal Effect of
Adding Coil Surface

Coil Surface

{Coil cost) \\

Coil Approach Temp

The approximate range of coil approach temperatures for evaporator and condenser coils is between 20
°F (1 row smooth bore tube coil) to 10 °F (4 row IE tube). 10°F is nearly a practical limit.
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A4. Coil Fouling

The effect of coil fouling is has been studied by various manufactures. The studies are proprietary and
the data cannot be disclosed. However, a couple of statements can be made.

e Actual fouling in the field is not determinate since there is a wide variety of conditions that can
cause fouling (dust, moisture, debris from plants, etc). However, the nominal performance
penalty is approximately 1.5% every year that the coil is not cleaned.

e Outdoor coils typically become more fouled and fouled more quickly, than indoor coils.

e The use of highly configured fins, notably with louvers or slit fins, accelerates fouling.

e Coils can be restored to their original as built performance using conventional cleaning methods
describe by the manufacturer and/or provided by competent service providers. This typically
involves use of a special, non-toxic, non-acid based cleaner that foams to remove dirt and grime
and push it away from the inner part of the coil. In the case of the indoor coil, it is sprayed on
but not rinsed (dehumidification will remove residual cleaner). In the case of the outdoor coil,
the cleaner is sprayed on and washed off.

Worse than fouling, coil corrosion is a topic of great concern especially in coastal regions. Normal
aluminum coils can be severely and rapidly affected by salt laden air in these regions. The main issue is
that a salt laden air sets up a electrolytic cell between the copper tube and the aluminum fin. The more
reactive aluminum fin corrodes rapidly, sometimes with a few months in severe cases. Performance is
dramatically affected, especially when the corrosion occurs at the aluminum to copper interface. This
may be estimated to be on the order of several percent annually. In severe cases after only a few years,
a compete loss of the tube to fin bond causes the heat transfer mechanism to be lost, and the product
will not operate properly due to high condensing temperature causing to product to trip it’s high
pressure safety control. Various techniques are used to overcome the problem including dip and bake
coatings and spray- on coating and pre-coated aluminum fins. The degree of effectiveness of these
treatments is widely variable, and there is no standard solution within the industry that is proven and
used by most manufacturers.
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EXCERPT FROM THE CONTRIBUTION OF ONE DELEGATE TO THE DISCUSSION
DURING THE 62ND MEETING OF THE EXECUTIVE COMMITTEE (TRANSCRIPT)

... “We all are aware that alternatives to HCFC-22 like R410A or HFC-32 and R-407A are inferior in
thermodynamic properties like HCFC-22. The TEAP report clearly brought out that the refrigerants like
R-410A which is not only having the high pressure in the system because of its lower normal boiling
point but also has lower critical temperature in comparison to HCFC-22. Similar will be the case with the
HFC-32. The TEAP recent reports have also clearly brought out that the cooling capacity and the
performance of the system with the refrigerants like R410A is much lower than that of HCFC-22 and it
decreases very forced with the increase in condensing temperatures. The drop in capacity and the
performance is as high as 15 to 20 per cent.

Mr. Chairman, as all of us are aware that most of the Article 5 Parties are in tropical climates where AC
systems are designed and tested at the 55 degree centigrade condensing temperature or above. As such,
condensing temperature, the cooling capacity and the performance of refrigerants like R410A or HFC-32
is quite lower than that of HCFC-22 maybe in the order of 15to 20 per cent. The industry is also to
provide to the consumer the same capacity units as they are supplying or marketing yearly there as they
were supplying same performance if not better.

Mr. Chairman, we have been given to understand by your industry and the experts working in this AC
systems, especially the air cool systems that the heat exchangers, especially the condenser plays an
important role in the performance of these units working in tropical climates where the systems are
already operating closer to the critical temperature. Any further increase in condensing temperature due
to not redesigning the heat exchangers for the change in alternatives refrigerants or properly optimizing it
will have an impact on the cooling capacity as well as the significant decrease in its performance. We
appreciate the efforts of the MLF Secretariat to present a complex technical subject in a simple manner
but the simplication must not unremain the realistic technical requirements of this competence especially
the heat exchangers. The paragraphs 4, 5, and 6 of the MLF Secretariat document gives the process of
manufacturing of the refrigerant to air heat exchangers which is very nicely explained; however, no
attempt has been made to see that thermodynamic are heat transfer requirements of the replacement of
refrigerants like R410A and maybe HFC-32 and their impact on the design of these heat exchangers. In
our opinion the process of manufacturing follows the design of such competence which is based on the
thermophysical properties and the flow characteristic of the refrigerant to deliver the required capacity
and performance.

Mr. Chairman, we have been given to understand by our industry and the heat exchanger experts who are
involved in developing in the manufacturing of such heat exchangers that the heat exchanger design is
quite critical and it is complex and it cannot be simply referred as and dispensed as MLF Secretariat
paper. | quote as it reads the last sentence of paragraph 6 of the Secretariat paper, document
UNEP/OzL.Pro/ExCom/62/55: “These heat exchangers do not substantially differ in their design or
material between HCFC-22 technology and the various current HCFC-22 alternatives (except for
ammonia and CO,).” This type of statement could not be appreciated by the experts and as per experts
there is a strong reservation about the technical expertise which this paper has been prepared.

The design of such heat exchangers is quite complex as there is two-phase flow of refrigerant, which is
either condensing or boiling as the case may be. The inside heat transfer coefficient is a function of mass
flex under volume flow rate, thermophysical properties of refrigerants as well as flow regimes which are
set during the process of condensation. The material used include surface softness of the tube influences
the heat transfer coefficient as well as pressure drops in the heat exchangers which have direct influence
on the performance of the heat exchangers and the air-conditioning system. The reduction of the mass
flow rate as well as the volume flow rate of the refrigerant as it is expected with R 410A or HFC-32 is
likely to be reduced in the order of 25 or 30 per cent. This reduction is likely to change the flow regime
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maybe from turbulent to laminar meaning drastically dropped inside the heat transfer coefficient if the
diameter of the tubes is not changed accordingly.

Mr. Chairman, | would like to mention that presently most of the manufacturers of the heat exchangers
are internally grooved of fin tubes instead of substitutes which further make the situation more complex.
Mr. Chairman, we have been told by the experts that the heat exchanger design is so complex even same
number of tubes of same diameter used but arranged in different manner like circuiting heat exchanged or
arrangement of tubes from stagger to inline or inline to staggered, the performance of the heat exchangers
drastically changes. The outside surfaces are fins.

These surfaces also play a vital role especially arriving on overall heat-transfer coefficient of these heat
exchangers and finally for the size of the heat exchanger for a given capacity. The fins spacing or fin
density also influence the overall heat transfer coefficient

However the increase in the number of fins vary with the length of the tube also influences hence
decrease performance. Such a complex design cannot be said as what has been mentioned in the
Secretariat’s paper. | would like to raise the issue of need of using better quality copper tubes in the case
of HFC refrigerants like R-410A or HFC-32 as referred by the MLF Secretariat paper. The combination
of HCFC-22 and the minimal uses presently is very tolerant and very mild and allow the use of normal
refrigerants, commercial copper tubing as this was also the case in the use CFCs. The industry in Article
5 Parties mostly uses such tubes. We recall the period when our industry changed from CFC-12 to
HFC-134a, there were issues related to copper plating and especially on the release valves of the
compressors this is mainly related to the quality of tubing used. In case of HFC-134a and the polysteryl
combination because of aggressive properties, the change in quality of copper tubing was essential.
Similar will be the case for R410-a and HFC 32, the quality of copper tubing is essential for the
changeover.

Mr. Chairman, in summary, | would like to emphasize that redesign and retooling of heat exchangers is an
integral part of the conversion from HCFC-22 to refrigerants like R-410A and HFC-32 and in no way this
could be said can this be said avoidable upgrades thus associated cost or the IC or 10 cost, these need to
be considered in the project proposal. We propose that the decision on heat exchangers should address
the following elements: 1) the cost of redesign and/or changes to heat exchangers processing required for
addressing different properties of alternatives should be eligible in full (cleanliness levels for copper tubes
under processing due to hydroscopic lubricants, ensuring heat tightness, etc. because they are directly
related to phase-out of HFCs; 2) the cost of redesign and/or changes to heat exchangers required to
maintain capacity and the performance of the heat exchangers at the baseline level as well as to maintain
climate impact at the baseline level should be eligible in full. As required by MOP decision XIX/6,
adverse impact on health and environment have to be minimized and the climate benefits maximized. The
above should apply to both incremental capital cost and operating cost required for implementing the
redesign and/or changes in the heat exchangers under processing. Thank you Mr. Chairman.”
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R410A/R22 Comparison of Pressure levels

R410A refrigerant is a near azeotropic blend. It is widely used in air conditioning
applications.

At high ambient temperatures, energy consumption/COP initially seems to be less favorable
than with R22. This is mainly due to the thermodynamic properties of this refrigerant. On
the other hand, very high isentropic efficiencies are achievable (with reciprocating and scroll
compressor), whereby the differences are lower in reality.

The material compatibility is comparable to the previously discussed blends and the same
applies for the lubricants. However, the pressure levels and the higher specific loads on the
system components need to be taken into account.

The fundamental criteria for HFC blends also apply to the system technology with R410A,
however the extreme high pressure levels have to be considered (42 bar at 55°C Ambient
temperature).

Compressors and other system components of “Standard Design” have substantial
limitations for the application of this refrigerant. However, due to the favorable properties of
R410A considerable effort is taken for the development of suitable products.

When considering to cover usual R22 application ranges, the significant differences in the
thermodynamic properties (e.g. pressure levels mass and volume flow, vapor density) must
be evaluated.

This also requires considerable constructional changes to compressors, heat exchangers, and
controls, as well as measures of tuning vibrations.

In addition, safety requirements are concerned also affecting the quality and dimensions of
piping and flexible tube elements (for ambient temperatures of approx. 55°C/42 bar).

Another criterion is the relatively low critical temperature of 73°C. Irrespective of the design
of components on the high pressure side, the condensing temperature is thus limited.
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Clarification why changes in the production lines in PETRA company is
required for changing from R22 to R410A and why to consider this
incremental operating cost of the heat exchanger of PETRA project?

*Changing the toolings and the heat exchanger production machines in Petra production facility is a

mandatory to accomplish the demonstration project for the below reasons:

a_

most of the company current production is for ARTICLE 5 countries(84%) and most of these
production percentage is for the gulf area which has high ambient conditions as the design
ambient for this countries is about 46 c and a lot of designer consider it 50 ¢

and if we compare the R410 a refrigerant pressure at this high ambient conditions and the
r22 refrigerant we find that the pressure of r410a at this condition is about 550 psig while it
is 320 psig using r22 refrigerant ( so the pressure difference is about 230 psig, R410 a is
much higher pressure than r22 specially at this high ambient conditions )and the current
tube thickness for the heat exchanger coils produced in petra company cannot be used in
this case as it is unsafe to use it in this high pressure levels in this article 5 countries and
specifically in these high ambient markets which is the major markets for Petra

So changing the tube thickness and outside diameter is not a luxury issue it is a mandatory
issue to produce these kind of heat exchanger which is suitable for this R410 a refrigerant
as it will be unsafe at all to use the current heat exchangers in this application

and we see that this change is a vital change required to implement this demonstration
project in the right and schedule time as agreed between all concerned parties

The R410A is a high pressure refrigerant and it is also high GWP refrigerant

And the requirement for supplying mechanically and electrically safe units is a major item
which all the standards and specifications ask for, keeping the heat exchanger facility as is
without changing the tooling will limit the use of this refrigerant (R410a) in the developing
countries because simply it is not comply with pressure safety requirements and will lead
the consultants and the certification bodies refuse to use this type of refrigerant in the A/C
applications and they will prefer to use the r22 refrigerant is it is more safe if we keep the
same tube thickness and OD in PETRA facility.

So Petra is recommending now to have a new machine (fin press + hairpin bender + tube benders +pipe

cutting machines ) which can handle the production requirements for %4 inch OD finned and tube

heat exchanger as Petra have only machines which can produce 3/8 inch OD WITH 0.3
MM TUBE THICKNESS).

C_

As per UL 1995 American standard which is used in many article 5 countries and as per
attached table the minimum tube thickness is 0.6 mm for 3/8 copper pipes and the tubes in
the heat exchanger coil must be capable to withstand a pressure of 5 times the normal



working pressure of the r410 a refrigerant at high ambient conditions in the most of article 5
countries while The heat exchanger tube thickness used in petra is about 0.3 mm thick with
3/8 inch OD this tube thickness is cannot withstand this test pressure as per UL1995 STD
requirements so using higher thickness is a mandatory for refrigerants (R410A)

Please see the attached documents from UL 1995 std which clarify the safety requirements
for the minimum tube thickness and pressure tests requirements in this regards.

Recommendations:

We recommend to consider adopting new machines for heat exchanger production line and to consider
this incremental operating cost for Petra project AND to adopt this decision in the 63 meeting

as this demonstration project cannot be completed 100% without adopting such changes in the heat
exchanger production line of petra engineering ind.
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Comments on “A Study of Fin and Tube Coil Manufacturing Changes for
Conversion from R-22 to R-410A”
Standards and Tests

Based on consultation with A/C manufacturers in Thailand, they considered two primary conditions that
their products will encounter: one during shipment given Thailand’s hot climate condition, and another
during normal operating condition.

During shipment, the temperature in a closed space of a delivery truck or container could rise
significantly over the ambient temperature, as a result pressure inside A/C components could be much
higher than those experienced during normal operating conditions and the refrigerant-containing parts
could suddenly burst. To meet this stringent condition, the manufacturers carry out the pressure design of
coils and other components in order to meet the burst test. The paper points out similar situation that
could occur during shipment in a hot location like Arizona.

They have adopted UL 1995 Standards: Clause 61 (Strength Test) where all refrigerant-containing parts
must be able to withstand 5 times the design pressure. While UL 1995 standards provide an alternative
method: Clause 62 (Fatigue Test Analysis), to test samples under simulated normal operating conditions,
the test sample is subjected to 3 times the design pressure which is lower than test pressure under the
burst test. The manufacturers do not feel the fatigue test should be used as a substitute test on condition
that could occur during shipment in hot climate condition.

R-22 and R-410A coils

Based on experience of major manufacturers, R-410A refrigeration system has a nearly identical overall
system performance to R-22 due to its superior heat transfer performance despite lower COP. The paper
claims that it is not necessary to made changes to the coil design when changing from R-22 to R-410A.

However, the pressure of R-410A system is nominally 60% to 70% higher than R-22, thus the R-410A
coil must be redesigned in order to meet the burst test pressure. The paper claims that designing coils for
R-410A to meet the burst test pressure would require the wall thickness to be 70% higher since the tube
wall thickness increase proportionately with pressure. This would require additional copper and would be
very costly.

The paper then suggests using a fatigue test as an alternative method to qualify R-410A coils without
changing the tube diameter, thickness, nor the standard materials of construction.

WB comments:

1. While we agree that fatigue test is a good method to test the system under simulated normal
operating condition, we do not think it adequately addresses the above condition that could occur
during shipment. If coils cannot withstand the typical burst test pressures needed to qualify R-
410A coils, the recommendation should have been to find an engineering solution to solve the
problem, instead of changing a testing method. Extending the result of the fatigue test analysis to



the case where the failure could arise from a different situation would not be technically
appropriate.

On the tube wall thickness, we believe it is possible to design coil to meet the increase pressure
without the abovementioned penalty and, in fact, that is how the industry is addressing the
problem. We would like to use an example below to support our view:

Copper tube in condenser contains refrigerant at high pressure. The internal pressure causes three
types of stresses on the tube: Circumferential or Hoop Stress (6y), Longitudinal Stress (61), and
Radial Stress (oRr)

Projecied
area -

If the ratio of the thickness to the internal diameter is less than about 1/10 then it can be
considered as thin-walled cylinder. It is assumed that the hoop and longitudinal stresses are
constant across the thickness. It may also be assumed that the radial stress is small and can be
neglected. Under thin-wall assumption, hoop stress can be calculated using the following
equation:

= x(3-1)
oy =Pp ot

Longitudinal stress is represented as follows:

1 d, 1
=3\ X(z‘ 1) = 3%

Where p = pressure, d, = outside diameter, and t = thickness

A tube could fail when subjected to an excessively high internal pressure. Since hoop stress is
twice as much as the longitudinal stress, it usually fails by bursting along a longitudinal direction.

R-22 baseline case:

Outside diameter, d,, 7.0 Mm
Wall thickness, t 0.3 Mm



Design pressure 450 Psig
Test pressure, p (5 times design pressure) 2,250 psig

Using the above equation, the hoop stress is calculated to be 24,000 psig at test pressure. This
result hoop stress is about 80% of copper yield strength.

From the above equation, it is clear that the hoop stress can be reduced either by reducing the
diameter, increasing the thickness, or both.

By setting 24,000 psig as the design limit, we can vary the diameter and wall thickness of the
copper tube until we can find the combination that can be used to manufacture R-410A coil that
meet the test pressure of 3,900 psig (5 times the design pressure at 780 psig).

Option 1: Fixed outside diameter at 7.0 mm, wall thickness varies from 0.3 to 0.5 mm

Outside diameter (d,) 7.0 7.0 7.0 mm
Wall thickness (t) 0.3 0.4 0.5 mm
Hoop stress 41,600 30,225 23,400 psig

The baseline copper tube (7.0 mm diameter and 0.3 mm wall thickness) would encounter hoop
stress significantly beyond the design limit if used in a R-410A system. The wall thickness will
need to be increased to 0.5 mm in order for the hoop stress to be within the design limit of 24,000
psig. This would result in additional copper requirement and not practical.

Option 2: Fixed outside diameter at 5.0 mm, wall thickness varies from 0.3 to 0.4 mm

Outside diameter (d,) 5.0 50 mm
Wall thickness (t) 0.3 0.4 mm
Hoop stress 28,600 20,475 psig

In this case, the wall thickness will need to be increased to 0.4 mm in order for the hoop stress to
be within the design limit.

While reducing the diameter of the tube and increasing wall thickness would result in decreasing
flow area and increasing pressure drops. This could be offset by lower volumetric flow rate and
better heat transfer and transport properties of R-410A.

Conclusions

We would like to conclude that a simple engineering solution can be found to manufacture coil for R-
410A system that meet the burst test requirement under UL1995. Reducing the diameter of the tube is
required by the manufacturers in order to ensure adequate strength of the condenser without
compromising its market competitiveness by avoiding excessive increase in the cost of coils.

Should you have any further comments or question, please do not hesitate to contact us.

MP Operations
The World Bank
6 March 2012
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